Answer:
y - 13 = 5(x + 2)
Step-by-step explanation:
The equation of a line in point- slope form is
y - b = m(x - a)
where m is the slope and (a, b) a point on the line
Given y = 5x - 3 in slope- intercept form
with slope m = 5, then
m = 5 and (a, b) = (- 2, 13)
y - 13 = 5(x - (- 2)), that is
y - 13 = 5(x + 2) ← in point- slope form
The solution to this system set is: "x = 4" , "y = 0" ; or write as: [4, 0] .
________________________________________________________
Given:
________________________________________________________
y = - 4x + 16 ;
4y − x + 4 = 0 ;
________________________________________________________
"Solve the system using substitution" .
________________________________________________________
First, let us simplify the second equation given, to get rid of the "0" ;
→ 4y − x + 4 = 0 ;
Subtract "4" from each side of the equation ;
→ 4y − x + 4 − 4 = 0 − 4 ;
→ 4y − x = -4 ;
________________________________________________________
So, we can now rewrite the two (2) equations in the given system:
________________________________________________________
y = - 4x + 16 ; ===> Refer to this as "Equation 1" ;
4y − x = -4 ; ===> Refer to this as "Equation 2" ;
________________________________________________________
Solve for "x" and "y" ; using "substitution" :
________________________________________________________
We are given, as "Equation 1" ;
→ " y = - 4x + 16 " ;
_______________________________________________________
→ Plug in this value for [all of] the value[s] for "y" into {"Equation 2"} ;
to solve for "x" ; as follows:
_______________________________________________________
Note: "Equation 2" :
→ " 4y − x = - 4 " ;
_________________________________________________
Substitute the value for "y" {i.e., the value provided for "y"; in "Equation 1}" ;
for into the this [rewritten version of] "Equation 2" ;
→ and "rewrite the equation" ;
→ as follows:
_________________________________________________
→ " 4 (-4x + 16) − x = -4 " ;
_________________________________________________
Note the "distributive property" of multiplication :
_________________________________________________
a(b + c) = ab + ac ; AND:
a(b − c) = ab <span>− ac .
_________________________________________________
As such:
We have:
</span>
→ " 4 (-4x + 16) − x = - 4 " ;
_________________________________________________
AND:
→ "4 (-4x + 16) " = (4* -4x) + (4 *16) = " -16x + 64 " ;
_________________________________________________
Now, we can write the entire equation:
→ " -16x + 64 − x = - 4 " ;
Note: " - 16x − x = -16x − 1x = -17x " ;
→ " -17x + 64 = - 4 " ; Solve for "x" ;
Subtract "64" from EACH SIDE of the equation:
→ " -17x + 64 − 64 = - 4 − 64 " ;
to get:
→ " -17x = -68 " ;
Divide EACH side of the equation by "-17" ;
to isolate "x" on one side of the equation; & to solve for "x" ;
→ -17x / -17 = -68/ -17 ;
to get:
→ x = 4 ;
______________________________________
Now, Plug this value for "x" ; into "{Equation 1"} ;
which is: " y = -4x + 16" ; to solve for "y".
______________________________________
→ y = -4(4) + 16 ;
= -16 + 16 ;
→ y = 0 .
_________________________________________________________
The solution to this system set is: "x = 4" , "y = 0" ; or write as: [4, 0] .
_________________________________________________________
Now, let us check our answers—as directed in this very question itself ;
_________________________________________________________
→ Given the TWO (2) originally given equations in the system of equation; as they were originally rewitten;
→ Let us check;
→ For EACH of these 2 (TWO) equations; do these two equations hold true {i.e. do EACH SIDE of these equations have equal values on each side} ; when we "plug in" our obtained values of "4" (for "x") ; and "0" for "y" ??? ;
→ Consider the first equation given in our problem, as originally written in the system of equations:
→ " y = - 4x + 16 " ;
→ Substitute: "4" for "x" and "0" for "y" ; When done, are both sides equal?
→ "0 = ? -4(4) + 16 " ?? ; → "0 = ? -16 + 16 ?? " ; → Yes! ;
{Actually, that is how we obtained our value for "y" initially.}.
→ Now, let us check the other equation given—as originally written in this very question:
→ " 4y − x + 4 = ?? 0 ??? " ;
→ Let us "plug in" our obtained values into the equation;
{that is: "4" for the "x-value" ; & "0" for the "y-value" ;
→ to see if the "other side of the equation" {i.e., the "right-hand side"} holds true {i.e., in the case of this very equation—is equal to "0".}.
→ " 4(0) − 4 + 4 = ? 0 ?? " ;
→ " 0 − 4 + 4 = ? 0 ?? " ;
→ " - 4 + 4 = ? 0 ?? " ; Yes!
_____________________________________________________
→ As such, from "checking [our] answer (obtained values)" , we can be reasonably certain that our answer [obtained values] :
_____________________________________________________
→ "x = 4" and "y = 0" ; or; write as: [0, 4] ; are correct.
_____________________________________________________
Hope this lenghty explanation is of help! Best wishes!
_____________________________________________________
Answer:
0 2
1 4 ⟌ 3 7
- 0
3 7
- 2 8
9
2 r 9
for 37 divided by 14
0 7
1 3 ⟌ 9 6
- 0
9 6
- 9 1
5
7 r 5
for 96 divided by 13
0 2 0
4 1 ⟌ 8 5 8
- 0
8 5
- 8 2
3 8
- 0
3 8
for 858 divided by 41
20 r 38
Step-by-step explanation:
Answer:
A. 35
Step-by-step explanation:
The median of a data set is the middle value when the data values are placed in order of size.
<u>Given data set</u>:
- {3, 35, 23, 37, 45, 5, 49, 27, 48}
Place the data in <u>order of size</u>:
- {3, 5, 23, 27, 35, 37, 45, 48, 49}
To find the median, divide the total number of data values (n) by 2.
- If n/2 is a whole number, the median is halfway between the values in this position and the position above.
- If n/2 is not a whole number, round it up to find the position of the median.
As there are 9 data values, the median value is:
Therefore, the median of the given data set is 35.
9514 1404 393
Answer:
(a) 6² +3² +1² +1² = 47
(b) 5² +4² +2² +1² +1² = 47
(c) 3³ +4² +2² = 47
Step-by-step explanation:
It can work reasonably well to start with the largest square less than the target number, repeating that approach for the remaining differences. When more squares than necessary are asked for, then the first square chosen may need to be the square of a number 1 less than the largest possible.
The approach where a cube is required can work the same way.
(a) floor(√47) = 6; floor(√(47 -6^2)) = 3; floor(√(47 -45)) = 1; floor(√(47-46)) = 1
__
(b) floor(√47 -1) = 5; floor(√(47-25)) = 4; ...
__
(c) floor(∛47) = 3; floor(√(47 -27)) = 4; floor(√(47 -43)) = 2