Answer:
Explanation:
<u>Elastic Potential Energy
</u>
Is the energy stored in an elastic material like a spring of constant k, in which case the energy is proportional to the square of the change of length Δx and the constant k.
Given a rubber band of a spring constant of k=5700 N/m that is holding potential energy of PE=8600 J, it's required to find the change of length under these conditions.
Solving for Δx:
Substituting:
Calculating:
Answer:
A. Time Division multiple Access (TDMA)
Explanation:
Time-division multiple access (TDMA) is a channel access method for shared-medium networks
It allows several users to share the same frequency channel by dividing the signal into different time slots. The users transmit in rapid succession, one after the other, each using its own time slot.
Answer:
Vector quantities are important in the study of motion. Some examples of vector quantities include force, velocity, acceleration, displacement, and momentum. The difference between a scalar and vector is that a vector quantity has a direction and a magnitude, while a scalar has only a magnitude. Vector, in physics, a quantity that has both magnitude and direction. It is typically represented by an arrow whose direction is the same as that of the quantity and whose length is proportional to the quantity's magnitude. A quantity which does not depend on direction is called a scalar quantity. Vector quantities have two characteristics, a magnitude and a direction. The resulting motion of the aircraft in terms of displacement, velocity, and acceleration are also vector quantities. A vector quantity is different to a scalar quantity because a quantity that has magnitude but no particular direction is described as scalar. A quantity that has magnitude and acts in a particular direction is described as vector.
Explanation:
The planet MARS is visible without a telescope on many clear nights. The planets JUPITER, MERCURY, VENUS and SATURN are also viewable without the aid of magnification.
Answer:
H₂0_{(s)} + heat → H₂O(l)
Explanation:
An ENDOTHERMIC reaction is a chemical reaction in which heat is absorbed by the reactants. As such the product is usually cooler than the products. In the equation above (the answer), heat is on the reactant side of the equation thus indicating that heat is absorbed by the reactants.
On the other hand, in the first equation heat is on the product side of the equation which is consistent with an Exothermic reaction.
Have a good day♥