Out of the 3 types of heat transfer, this scenario would be most likely to be an example of convection.
Convection is where the transferring of heat is resulted through the movements of fluid, but in this case it is air. What happens is that when a part of the whole mass of air is heated, the hotter air rises and the cooler air descends and takes place of the hotter air before it was heated. Then, the cooler air becomes hotter and the hotter air before becomes the cooler air of both, which then results to the repeat of the exchange of places. This creates a motion until the whole mass has achieved mutual temperature, the heat source has stopped or extinguished, or there is a shift of temperature.
Answer:
Part (i)
Z = 39.06 ohm
Part (ii)
R = 21.7 ohm
Explanation:
a) here we know that
maximum value of EMF = 125 V
maximum value of current = 3.20 A
now by ohm's law we can find the impedence as
now we will have
Part b)
Now we also know that
now we have
Answer:
(a) Length =136.58 m
(b) T=5995 N
Explanation:
for the glider in the back
T - 1900 = 700 a
for the glider in front
12000-T -1900 = 700a
add equations
12000-3800 = 1400 a
a=5.85 m/s^2
v^2 = v0^2 + 2 a x
40^2 = 2*5.85*x
Length =136.58 m
b) plug the a back into one of the previous formula
T - 1900 = 700*5.85
T=5995 N
Explanation:
The given data is as follows.
Angular velocity () = 2.23 rps
Distance from the center (R) = 0.379 m
First, we will convert revolutions per second into radian per second as follows.
= 2.23 revolutions per second
=
= 14.01 rad/s
Now, tangential speed will be calculated as follows.
Tangential speed, v =
= 0.379 x 14.01
= 5.31 m/s
Thus, we can conclude that the tack's tangential speed is 5.31 m/s.