Answer:
F = -8440.12 N
the magnitude of the average force needed to hold onto the child is 8440.12 N
Explanation:
Given;
Mass of child m = 16 kg
Speed of each car v = 59.0 mi/h = 26.37536 m/s
Time t = 0.05s
Applying the impulse momentum equation;
Impulse = change in momentum
Ft = ∆(mv)
F = ∆(mv)/t
F = m(∆v)/t
Where;
F = force
t = time
m = mass
v = velocity
Since the final speed of the car is zero(at rest) then;
∆v = 0 - v = -26.37536 m/s
Substituting the given values;
F = 16×-26.37536/0.05
F = -8440.1152 N
F = -8440.12 N
the magnitude of the average force needed to hold onto the child is 8440.12 N
it is A hope it is useful.
c adding research resources during an investigation
Answer:
meters
Explanation:The question ask for the maximum value of the function f(t) which can be find by find the maxima of the function
The maxima of the function occurs when the slope is zero. i.e.
Hence the maxima occurs at t=1.63 seconds
The maximum value of f is
hence maximum height is found to be
meters
Answer:
<u>The pendulum bob swing past the mean position because:</u>
When a pendulum's bob is accelerating at its extreme position its velocity is zero. Due to the restoring toque the bob starts to accelerates towards its mean postion. The maximum acceleration of the pendulum's bob is and the the acceleration decreases as towards the mean position.
The acceleration at the mean position becomes zero but the velocity remains maximum. Hence the bob continues to move and does not stops.Thus it can summarised as the force decreases ,acceleration decreases and velocity increases at slow rate.