Answer: 9
Step-by-step explanation:
An elf ate 15 of your muffins and that was 5/8 of all of them. To get the number of muffins left goes thus:
We can first calculate the total number of muffins the person had. Let the total number of muffins be y. That means the elf ate 5/8 of y.
5/8 of y = 15
5/8 × y = 15
0.625 × y = 15
0.625y = 15
Divide both side by 0.625
0.625y/0.625 = 15/0.625
y = 24
The total amount of muffins is 24. Since the elf has eaten 15, the amount left will be: 24-15 = 9
The square root of a a negative integer is imaginary.
It would still be a negative under a square root if you multiplied it by 2, therefor it will still be imaginary, or I’m assuming as your book calls it, undefined.
2•(sqrt-1) = 2sqrt-1
If you add a number to -1 itself, specifically 1 or greater it will become a positive number or 0 assuming you just add 1. In that case it would be defined.
-1 + 1 = 0
-1 + 2 = 1
If you add a number to the entire thing “sqrt-1” it will not be defined.
(sqrt-1) + 1 = 1+ (sqrt-1)
If you subtract a number it will still have a negative under a square root, meaning it would be undefined.
(sqrt-1) + 1 = 1 + (sqrt-1)
however if you subtract a negative number from -1 itself, you end up getting a positive number or zero. (Subtracting a negative number is adding because the negative signs cancel out).
-1 - -1 = 0
-1 - -2 = 1
If you squared it you would get -1, which is defined
sqrt-1 • sqrt-1 = -1
and if you cubed it, you would get a negative under a square root again, therefor it would be undefined.
sqrt-1 • sqrt-1 • sqrt-1 = -1 • sqrt-1 = -1(sqrt-1)
Sorry if this answer is confusing, I don’t have a scientific keyboard, I’ll get one soon.
The answer to number eight is
That it would have to reflect in the middle and it has Proportional angles.
Answer: 14.73
Step-by-step explanation:
The given triangle is a right angle triangle.
EF^2 + DF^2 = ED^2
The hypotenuse is |ED| while the two shorter legs are |EF| and |DF|.
We can then apply the Pythagoras Theorem to find the length of EF.
(EF)^2 + (DF)^2 = (ED)^2
(EF)^2 + (12)^2 = (19)^2
(EF)^2 + 144 = 361
(EF)^2 = 361 - 144
(EF)^2 = 217
EF = 14.73