If you can observe, we are only given one parameter here which is the time. If you want to compute for the distance, you have to know the speed. The hint here is the 'radio transmissions'. All the information gathered by the probe from the space, is sent back to the Earth by electromagnetic waves. Hence, we must know the speed of electromagnetic waves. Since they are as fast as light, their speed is equal to 300 million meters per second. Then, we can finally determine the distance.
d = speed*time
d = (300×10⁶ m/s)(2.53 hours)
Since 1 hour = 3,600 seconds,
d = (300×10⁶ m/s)(2.53 hours)(3,600 seconds/1 hour)
d = 2.73×10⁻¹² m
According to the following formula, the answer is 2,300 g or 2.3 kg:
Volume (m)/Mass (m) Equals Density (p) (V)
Here, the density is 1.15 g/mL, allowing the formula described above to result in a mass of 2.00 L:
p=m/V
1.15 g/mL is equal to x g/2.00 L or x g/2,000 mL.
2,000 mL of x g = 1.15 g of g/mL
2.3 kg or 2,300 g for x g.
<h3>How many grams of glucose are in a 1000ml bag of glucose 5?</h3>
Its active ingredient is glucose. This medication includes 50 g of glucose per 1000 ml (equivalent to 55 g glucose monohydrate). 50 mg of glucose is present in 1 ml (equivalent to 55 mg glucose monohydrate). A transparent, nearly colourless solution of glucose in water is what is used in glucose intravenous infusion (BP) at 5% weight-to-volume.
Patients who are dehydrated or who have low blood sugar levels get glucose intravenously. Other medications may be diluted with glucose intravenous infusion before being injected into the body. Other diseases and disorders not covered above may also be treated with it.
learn more about glucose intravenous infusion refer
brainly.com/question/7057736
#SPJ4
Answer:
option a is correct
Explanation:
<h2>I hope it's help you ❣️❣️</h2>