Answer:
B and D
Step-by-step explanation:
7z -1 = 27 46 - 8z = 14
+1 +1 -46 -46
7z = 28 -8z = -32
/7 /7 /-8 /-8
z = 4 z = 4
Solve for x:
8 x + 17 = 2 x + 35
Subtract 2 x from both sides:
(8 x - 2 x) + 17 = (2 x - 2 x) + 35
8 x - 2 x = 6 x:
6 x + 17 = (2 x - 2 x) + 35
2 x - 2 x = 0:
6 x + 17 = 35
Subtract 17 from both sides:
6 x + (17 - 17) = 35 - 17
17 - 17 = 0:
6 x = 35 - 17
35 - 17 = 18:
6 x = 18
Divide both sides of 6 x = 18 by 6:
(6 x)/6 = 18/6
6/6 = 1:
x = 18/6
The gcd of 18 and 6 is 6, so 18/6 = (6×3)/(6×1) = 6/6×3 = 3:
Answer: x = 3
So you would start from subtracting -4 on both sides then it leave 9x=-9 then divide both sides by 9 which would leave you with “ x=-18”
20 is the answer to your question use pythag theorem
Answer: Solving for f. Want to solve for x instead?
1 Remove parentheses.
f\times -2fx=3{x}^{2}-8x+7f×−2fx=3x
2
−8x+7
2 Use Product Rule: {x}^{a}{x}^{b}={x}^{a+b}x
a
x
b
=x
a+b
.
-{f}^{2}\times 2x=3{x}^{2}-8x+7−f
2
×2x=3x
2
−8x+7
3 Regroup terms.
-2{f}^{2}x=3{x}^{2}-8x+7−2f
2
x=3x
2
−8x+7
4 Divide both sides by -2−2.
{f}^{2}x=-\frac{3{x}^{2}-8x+7}{2}f
2
x=−
2
3x
2
−8x+7
5 Divide both sides by xx.
{f}^{2}=-\frac{\frac{3{x}^{2}-8x+7}{2}}{x}f
2
=−
x
2
3x
2
−8x+7
6 Simplify \frac{\frac{3{x}^{2}-8x+7}{2}}{x}
x
2
3x
2
−8x+7
to \frac{3{x}^{2}-8x+7}{2x}
2x
3x
2
−8x+7
.
{f}^{2}=-\frac{3{x}^{2}-8x+7}{2x}f
2
=−
2x
3x
2
−8x+7
7 Take the square root of both sides.
f=\pm \sqrt{-\frac{3{x}^{2}-8x+7}{2x}}f=±√
−
2x
3x
2
−8x+7
8 Simplify \sqrt{-\frac{3{x}^{2}-8x+7}{2x}}√
−
2x
3x
2
−8x+7
to \sqrt{\frac{3{x}^{2}-8x+7}{2x}}\imath√
2x
3x
2
−8x+7
ı.
f=\pm \sqrt{\frac{3{x}^{2}-8x+7}{2x}}\imathf=±√
2x
3x
2
−8x+7
ı
9 Regroup terms.
f=\pm \imath \sqrt{\frac{3{x}^{2}-8x+7}{2x}}f=±ı√
2x
3x
2
−8x+7
Done- :)
f=±ı√ 2x 3x 2 −8x+7
Step-by-step explanation