The solution would be like
this for this specific problem:
<span>v = ? </span><span>
<span>u = 0.0 m/s </span>
<span>a = 9.8 m/s^2 </span>
<span>s = 56.1 m </span></span>
<span>v^2 = (0.0 m/s)^2 + [2 *
(9.8 m/s^2) * (56 m) ] </span><span>
<span>v^2 = 2 * (9.8 m/s^2) * (56 m) </span>
<span>v^2 = 1,097.6 m^2/s^2 </span>
<span>v = SQRT {1,097.6 m^2/s^2 } </span></span>
v = 33.1 m/s
<span>v = u + at </span>
<span>(v - u) / a = t </span>
[ (33.1 m/s) - (0.0 m/s)
] / (9.8 m/s^2) = 3.38 seconds
If the pigeon is 56.0 m below the initial position of the
falcon, it will take 3.38 seconds for the falcon to reach the pigeon. I am
hoping that this answer has satisfied your query and it will be able to help
you in your endeavor, and if you would like, feel free to ask another question.
Where??? complete your question please
Answer:
The answer to your question is 784.8 J. None of your answer, did you forget some information?
Explanation:
Data
mass = 20 kg
distance = 4 m
work = ?
Formula
Work = force x distance
Force = mass x gravity
Process
1.- Calculate the weight of the block
Weight = 20 x 9.81
Weight = 196.2 N
2.- Calculate the work done
Work = 196.2 x 4
Work = 784.8 J