Answer:
v = 10 km/h
Explanation:
Step 1: Given data
- Distance traveled in the Bike Trip (d): 1 km
- Time elapsed in the Bike Trip (t): 0.1 h
Step 2: Calculate the speed in the Bike Trip
The speed (v) is equal to the distance traveled divided by the time elapsed. We will use the following mathematical expression.
v = d/t
v = 1 km/0.1 h
v = 10 km/h
The speed is 10 kilometers per hour.
Answer:
Explanation:
There are three types of interactions involved between the particles when solution are formed.
1 : Solute - solute interaction:
2 : Solute - solvent interaction:
3 : Solvent - solvent interaction:
1 : Solute - solute interaction:
It is the inter-molecular attraction between the solute particles.
2 : Solute - solvent interaction:
It involve the inter-molecular attraction between solvent and solute particles.
3 : Solvent - solvent interaction:
It involve the intermolecular attraction between solvent particles.
Solutions are formed if the intermolecular attraction between solute particles are similar to the attraction between solvent particles.
Exothermic process:
The process will exothermic when solute solvent bonds are formed with the release of energy and energy required to brake the solute-solute particles and solvent solvent particles are less.
Endothermic process:
The process will be endothermic when energy required to break the solute-solute particles and solvent solvent particles are higher than energy released when solute solvent bonds are formed .
Answer:
–36 KJ.
Explanation:
The equation for the reaction is given below:
2B + C —› D + E. ΔH = – 24 KJ
From the equation above,
1 mole of D required – 24 KJ of energy.
Now, we shall determine the energy change associated with 1.5 moles of D.
This can be obtained as illustrated below:
From the equation above,
1 mole of D required – 24 KJ of energy
Therefore,
1.5 moles of D will require = 1.5 × – 24 = –36 KJ.
Therefore, –36 KJ of energy is associated with 1.5 moles of D.
Answer:
An inclined plane is a machine because it makes horizontal surface that make easier for us to move objects to higher or lower surfaces.