Answer:
Step-by-step explanation:
Remark
The angle formed by the intersection of a tangent to a circle and an intersecting secant is 1/2 (Arc PS - arc PR)
PS = 208
PR = 74
Solution
x = 1/2 (208 - 74)
x = 1/2 (134)
x = 67
-5║4y-11║-3=12
-5║4y-11║-3 +3=12+3
- 5║4y-11║=15
-5/5║4y-11║=15/-5
║4y-11║=-3
4y-11=-3 -5║4y-11║-3=12
4y-11+11=-3+11 -5║4(2)-11║-3=12
4y=8 -5║-3║-3=12
4y/4=8/4 -5 (3)-3=12
y=2 -18≠12
4y-11=3 -5║4y-11║-3=12
4y-11+11=3+11 -5║4(7/2)-11║-3=12
4y=14 -5(3)-3=12
4y/4=14/4 -18≠ 12
y=7/2
No solutions
Answer:
0 boxes minimum
Step-by-step explanation:
The mass of the truck and paper must satisfy ...
22.5b + 2948.35 ≤ 4700 . . . . total truck mass cannot exceed bridge limits
22.5b ≤ 1751.65
b ≤ 77.85
The driver can take a minimum of 0 boxes and a maximum of 77 boxes of paper over the bridge.
_____
The question asks for the <em>minimum</em>. We usually expect such a question to ask for the <em>maximum</em>.
Answer:
b/(b+a)
Step-by-step explanation:
(1/a)-(1/b) :[ (b²-a²)/ab²]
first solve :
common denominator ab
(1/a)-(1/b) = (b-a)/ab
[b-a/ab] : [(b²-a²)/ab²]
when divide fraction ( division sign turn to (×) and flip the second fraction(reciprocal):
[b-a/ab] × [ab²/ (b²-a²)]
then simplify : ab²/ab = b
(b-a)×(b/b²-a²)
factorize : b²-a² = (b-a)(b+a)
(b-a)×(b/(b-a)(b+a)) simplify : (b-a)/b-a = 1
[(b-a)(b)]/[(b-a)(b+a)
b/b+a