Answer:
1.35 kJ
Explanation:
KE = ½mv² = ½ × 0.030 kg × (300 m·s⁻¹)² = 1350 J = 1.35 kJ
Answer:
95 J
Explanation:
You can calculate efficiency by dividing useful output by total input, then multiplying it to 100.
So the foumula goes like:
Efficiency= (Useful output/Total input)x100
In this question,
Efficiency= 95%
Useful output= x
Total input= 200
Therefore;
95=(x/200)x100
0.95=x/100
x=0.95x100
x=95 Joules
1) 211m/s
2)240<span>°
3)759,600m or 759.6 km</span>
Answer:
a) It takes her 1.43 s to reach a speed of 2.00 m/s.
b) Her deceleration is - 2.50 m/s²
Explanation:
The equation of velocity for an object that moves in a straight line with constant acceleration is as follows:
v = v0 + a · t
Where:
v = velocty.
v0 = initial velocity.
a = acceleration.
t = time.
a) Using the equation of velocity, let´s consider that the car moves in the positive direction. Then:
v = v0 + a · t
2.00 m/s = 0 m/s + 1.40 m/s² · t
t = 2.00 m/s / 1.40 m/s²
t = 1.43 s
It takes her 1.43 s to reach a speed of 2.00 m/s
b) Let´s use again the equation of velocity, knowing that at t = 0.800 s the velocity is 0 m/s:
v = v0 + a · t
0 = 2.00 m/s + a · 0.800 s
-2.00 m/s / 0.800 s = a
a = -2.50 m/s²
Her deceleration is - 2.50 m/s²