Answer:
An apple hanging at a branch has potential energy due its position. It can be written as PE= mgh where m is the mass of the apple h is the distance between the apple and the ground and g is the acceleration due to gravity.
as the apple falls from the tree it loses its potential energy and gains kinetic energy due to the movement of the apple. Its kinetic energy will be given by KE= 1/2mv² where m is the mass of the apple and v is the speed with which the apple falls.
As the apple falls the height or the distance reduces and PE becomes reduces. But it gains Kinetic energy due to its speed.
But when the apple falls to the ground and comes to rest its kinetic energy is converted to potential energy.
thus the total energy remains the same. it changes from one form to the other but remains unaltered.
The Electric field is zero at a distance 2.492 cm from the origin.
Let A be point where the charge C is placed which is the origin.
Let B be the point where the charge C is placed. Given that B is at a distance 1 cm from the origin.
Both the charges are positive. But charge at origin is greater than that of B. So we can conclude that the point on the x-axis where the electric field = 0 is after B on x - axis.
i.e., at distance 'x' from B.
Using Coulomb's law, ,
=
k is the Coulomb's law constant.
On substituting the values into the above equation, we get,
Taking square roots on both sides and simplifying and solving for x, we get,
1.67x = 1+x
Therefore, x = 1.492 cm
Hence the electric field is zero at a distance 1+1.492 = 2.492 cm from the origin.
Learn more about Electric fields and Coulomb's Law at brainly.com/question/506926
#SPJ4
Choices 'a', 'c', and 'd' are true.
In choice 'b', I'm not sure what it means when it says that masses
are 'balanced'. To me, masses are only balanced when they're on
a see-saw, or on opposite ends of a rope that goes over a pulley.
Maybe the statement means that the mass of the nucleus and the
mass of the electron cloud are equal. This is way false. It takes
more than 1,800 electrons to make the mass of ONE proton or
neutron, and the most complex atom in nature only has 92 electrons
in it. So there's no way that the masses of the nucleus and the electrons
in one atom could ever be anywhere near equal.
The answer is C I believe
<span> One </span>volt<span> is </span>defined<span> as the difference in electric potential between two points of a conducting wire when an electric current of one ampere dissipates one watt of power between those points.</span>