Answer:
duty h gucuuvu h just hc i oicuxp o cut o icucj x uc jo 8cuc8c
Answer:
v = 6.45 10⁻³ m / s
Explanation:
Electric force is
F = q E
Where q is the charge and E is the electric field
Let's use Newton's second law to find acceleration
F- W = m a
a = F / m - g
a = q / m E g
Let's calculate
a = -1.6 10⁻¹⁹ / 9.1 10⁻³¹ (-1.30 10⁻¹⁰) - 9.8
a = 0.228 10² -9.8
a= 13.0 m / s²
Now we can use kinematics, knowing that the resting parts electrons
v² = v₀² + 2 a y
v =√ (0 + 2 13.0 1.6 10⁻⁶)
v = 6.45 10⁻³ m / s
Answer:
L = 1.15 m
Explanation:
The diffraction phenomenon is described by the equation
a sin θ = m λ
Where a is the width of the slit, λ the wavelength and m is an integer, the order of diffraction is left.
The diffraction measurements are made on a screen that is far from the slit, and the angles in the experiment are very small, let's use trigonometry
tan θ = y / L
tan θ = sint θ / cos θ≈ sin θ
We substitute in the first equation
a (y / L) = m λ
The first maximum occurs for m = 1
The distance is measured from the center point of maximum, which coincides with the center of the slit, in this case the distance is the total width of the central maximum, so the distance (y) measured from the center is
y = 1.15 / 2 = 0.575 cm
y = 0.575 10⁻² m
Let's clear the distance to the screen (L)
L = a y / λ
Let's calculate
L = 115 10⁻⁶ 0.575 10⁻² / 575 10⁻⁹
L = 1.15 m
Answer:
453 gm
Explanation:
<u>Immersed </u>objects are buoyed up by force equal to mass of displaced liquid
400 + 53 = 453 gm in air
Answer: A (,309.8°)
B (2, 315°)
C (, 26.56°)
Explanation: To transform rectangular coordinates into polar coordinates use:
and
For point A:
°
Point A is in the II quadrant, so we substract the angle for 360° since it is in degrees:
309.8°
Polar coordinates for point A is (, 309.8°)
For point B:
°
Point B is in IV quadrant, so:
315°
Polar coordinates for point B is (, 315°)
For point C:
26.56°
Polar coordinates for point C is (, 26.56°)