Answer:
Order of decreasing: CaS> LiCl> CsCl. That is CsCl has the lowest lattice energy.
Explanation:
LATTICE ENERGYcan be used to estimate the STRENGHT of the bonds in an ionic compound.
ATOMIC RADIUS is a function of lattice energy. The atomic radius INCREASES as you move DOWN a group. LATTICE ENERGY DECREASES as ATOMIC RADIUS increases.
Considering the cations Lithium +1, and Caesium +1 , as one move DOWN the GROUP the ions get larger, this causes the LATTICE ENERGY TO DECREASE DOWN THE GROUP. This means that between lithium in and caesium ion, the Caesium ion has LOWER LATTICE ENERGY as COMPARE TO LITHIUM ION.
AS ONE MOVE ACROSS THE PERIOD, POSITIVE IONS BECOMES MORE CHARGED, and the MORE THE CHARGE, THE GREATER THE LATTICE ENERGY.
Therefore, Calcium ion will have higher lattice energy than Lithium ion.
Answer: flame in a lamp, tube light, electric bulb
Explanation:
Algae is not an abiotic factor.
Answer:
ΔG° = 41.248 KJ/mol (298 K); the correct answer is a) 41 KJ
Explanation:
Ag+(aq) + 2NH3(aq) ↔ Ag(NH3)2+(aq)
⇒ Kf = 1.7 E7; T =298K
⇒ ΔG° = - RT Ln Kf.....for aqueous solutions
∴ R = 8.314 J/mol.K
⇒ ΔG° = - ( 8.314 J/mol.K ) * ( 278 K ) ln ( 1.7 E7 )
⇒ ΔG° = 41248.41 J/mol * ( KJ / 1000J )
⇒ ΔG° = 41.248 KJ/mol
Answer:
The initial temperature is 499 K
Explanation:
Step 1: Data given
initial volume = 12 cm3 = 12 mL
Final volume = 7 cm3 = 7mL
The final temperature = 18 °C = 291 K
Step 2: Calculate the initial temperature
V1/T1 = V2/T2
⇒with V1 = the initial volume = 0.012 L
⇒with T1 = the initial volume = ?
⇒with V2 = the final volume 0.007 L
⇒with T2 = The final temperature = 291 K
0.012 / T1 = 0.007 / 291
0.012/T1 = 2.4055*10^-5
T1 = 0.012/2.4055*10^-5
T1 = 499 K
The initial temperature is 499 K