These mars can tell the scientist that there are still a lot of things that they can not discover. The glaciation can also tell us about the alignment of the earth and not just it can tell us about the climate. That is why it is really important for the scientist to study keenly in this kind of matters.
Answer:
b)15.0°C
Explanation:
Specific Heat of Water=4.2 J/g°C
This means, that 1 g of Water will take 4.2 J of energy to increase its temperature by 1°C.
∴80 g Water will take 80×4.2 J of energy to increase its temperature by 1°C.
80×4.2 J=336 J
Total Energy Provided=1680 J
The temperature increase=\frac{\textrm{Total energy required}}{\textrm{energy required to increase temperature by one degree}}
Temperature increase=
=5°C
Initial Temperature =10°C
Final Temperature=Initial + Increase in Temperature
=10+5=15°C
Answer:
moenkopi formation because layers further down are always older. think about it as a pile of laundry the clothes at the bottom of the pile were worn earlier in the week and are older and dirtier.
Explanation:
also pls mark brainliest <3 :)))
Answer:
16 g/mol
Explanation:
In CO2, it means we have 1 mole of carbon and 2 moles of oxygen.
However, we want to find the molar mass of just a single mole of oxygen.
Now, from tables of values of elements in electronic configuration, the molar mass of oxygen is usually approximately 16 g/mol.
In essence the molar mass is simply the atomic mass in g/mol
Answer:
+1
Explanation:
Electrochemistry. In oxidation–reduction (redox) reactions, electrons are transferred from one A redox reaction is balanced when the number of electrons lost by the reductant Hg(l)∣Hg2Cl2(s)∣Cl−(aq) ∥ Cd2+(aq)∣Cd(s).
As is evident from the Stock number, mercury has an oxidation state of +1. This makes sense, as chlorine usually has an oxidation state of -1.