Answer:
When you don't move, you still use energy. This energy is called potential energy, or, stored energy.
When you don't move or do work, you can use energy.
Answer:
false
Explanation:
discovered colours of the rainbow
Answer: Voltage is the same across each component of the parallel circuit. The sum of the currents through each path is equal to the total current that flows from the source. You can find total resistance in a Parallel circuit with the following formula: 1/Rt = 1/R1 + 1/R2 + 1/R3 +.
Hope this helps!
To solve the problem, it is necessary to apply the concepts related to the kinematic equations of the description of angular movement.
The angular velocity can be described as
Where,
Final Angular Velocity
Initial Angular velocity
Angular acceleration
t = time
The relation between the tangential acceleration is given as,
where,
r = radius.
PART A ) Using our values and replacing at the previous equation we have that
Replacing the previous equation with our values we have,
The tangential velocity then would be,
Part B) To find the displacement as a function of angular velocity and angular acceleration regardless of time, we would use the equation
Replacing with our values and re-arrange to find
That is equal in revolution to
The linear displacement of the system is,
Answer:
<em>Answer: positive velocity & negative acceleration</em>
Explanation:
<u>Accelerated Motion</u>
Both the velocity and acceleration are vectors because they have magnitude and direction. When the motion is restricted to one dimension, i.e. left-right or up-down, the direction is marked with the sign according to some preset reference.
The locomotive is moving at a certain speed with a (so far) unknown sign but the acceleration has a negative sign. Since the locomotive comes to a complete stop it means the velocity and the acceleration are of opposite signs.
Thus the velocity is positive.
Answer: positive velocity & negative acceleration