Answer:
a. slope=rise/run
rise=0.02
run=-2
determined using the point (3,0.08) and (1,0.1) on the graph
slope=0.02/-2
= -0.01 or -1/100
b.area= area of trapizoid+ rectangle
((0.07+0.11)÷2)×4+1×0.07
0.36+0.07
=0.43$
c. the area represent the total cost after 5 hours
PLEASE MARK BRAINLIEST
Answer:
Decrease the distance between the two objects.
Explanation:
The force (F) of attraction between two masses (M₁ and M₂) separated by a distance (r) is given by:
F = GM₁M₂ / r²
NOTE: G is the gravitational force constant.
From the equation:
F = GM₁M₂ / r²
We can say that the force is directly proportional to the masses of the object and inversely proportional to the square of the distance between them. This implies that an increase in any of the masses will increase the force of attraction and likewise, a decrease in any of the masses will lead to a decrease in the force of attraction.
Also, an increase in the distance between the masses will result in a decrease in the force of attraction and a decrease in the distance between the masses, will result in an increase in the force of attraction.
Considering the question given above,
To increase the gravitational force between the two objects, we must decrease the distance between the two objects as explained above.
Sun fives off both of them
Answer:
The De Broglie wavelength decreases
Explanation:
The relationship between the De Broglie wavelength of a particle and its momentum is given by
where
is the De Broglie wavelength of the particle
h is the Planck constant
p is the momentum of the particle
As we see from the formula, there is an inverse relationship between the De Broglie's wavelength and the momentum. Therefore, we can conclude that:
- if the momentum of the electron increases,
- its De Broglie wavelength will decrease
and vice-versa.