Pare a.) $70 is what he would have left. Since each trip is $14 you would multiply that by the amount of times he went which was 11. 14x11 is $154. But you need what he has left so you take his total amount $224-$154 and get $70.
Part b.) 16 times. He has $224 total. You want to find out how many times he can go on the tool roads. We know the toll roads cost $14 each time. So you do $224/14 and get an even amount of 16. He would be able to use it 16 times before he have no money left.
Answer:
[-3, ∞)
Step-by-step explanation:
There are many ways to find the range but I will use the method I find the easiest.
First, find the derivative of the function.
f(x) = x² - 10x + 22
f'(x) = 2x - 10
Once you find the derivative, set the derivative equal to 0.
2x - 10 = 0
Solve for x.
2x = 10
x = 5
Great, you have the x value but we need the y value. To find it, plug the x value of 5 back into the original equation.
f(x) = x² - 10x + 22
f(5) = 5² - 10(5) + 22
= 25 - 50 +22
= -3
Since the function is that of a parabola, the value of x is the vertex and the y values continue going up to ∞.
This means the range is : [-3, ∞)
Another easy way is just graphing the function and then looking at the range. (I attached a graph of the function below).
Hope this helped!
X to the power of 8
When dividing powers, you subtract the "small numbers". When multiplying, you add them. 3-(-5) = 8
Hope it helps!
Plug x = 0 into the function
f(x) = x^3 + 2x - 1
f(0) = 0^3 + 2(0) - 1
f(0) = -1
Note how the result is negative. The actual number itself doesn't matter. All we care about is the sign of the result.
Repeat for x = 1
f(x) = x^3 + 2x - 1
f(1) = 1^3 + 2(1) - 1
f(1) = 2
This result is positive.
---------------------------
We found that f(0) = -1 and f(1) = 2. The first output -1 is negative while the second output 2 is positive. Going from negative to positive means that, at some point, we will hit y = 0. We might have multiple instances of this happening, or just one. We don't know for sure. The only thing we do know is that there is at least one root in this interval.
To actually find this root, you'll need to use a graphing calculator because the root is some complicated decimal value. Using a graphing calculator, you should find the root to be approximately 0.4533976515