Answer:
There are 6 slices left.
Step-by-step explanation:
The remaining slices are:
Carrot Cake
Chocolate Cake
There are 6 slices left.
<h2>
Answer and Explanation to questions 13,14,15</h2>
13) as given in the question.
14) Since Y is the midpoint of XZ. So, Y will divide XZ in equal halves into XY and YZ.
15)
and . So,
<h2>
Answer and Explanation to questions 16,17,18</h2>
∠3 is supplementary to ∠1 means: ∠3 + ∠1 = 180°
And, according to figure ∠1 + ∠2 = 180° as ∠1 and ∠2 form a straight line.
∠3 + ∠1 = 180° .............(i)
∠1 + ∠2 = 180° .............(ii)
subtracting equation (i) and (ii) will give ∠3 = ∠2 ..........(iii)
15) ∠3 is supplementary to ∠1 as given in the question
16) ∠2 is supplementary to ∠1 as shown be equation (ii)
18) ∠3 ≅ ∠2 as shown by equation (iii)
<h2>
Answer and Explanation to questions 19</h2>
∠3 and ∠4 form a straight line. Therefore, ∠3 + ∠4 = 180° .......(i)
∠4 and ∠5 form a straight line. Therefore, ∠4 + ∠5 = 180° .......(ii)
subtracting equation (i) and (ii)
∠3 + ∠4 - (∠4 + ∠5) = 180°-(180°)
∠3 + ∠4 - ∠4 - ∠5 = 180°-180°
∠3 - ∠5 = 0
∴ ∠3 = ∠5 (Hence Proved)
Answer D
...........................................
If you get 0 as the last value in the bottom row, then the binomial is a factor of the dividend.
Let's say the binomial is of the form (x-k) and it multiplies with some other polynomial q(x) to get p(x), so,
p(x) = (x-k)*q(x)
If you plug in x = k, then,
p(k) = (k-k)*q(k)
p(k) = 0
The input x = k leads to the output y = 0. Therefore, if (x-k) is a factor of p(x), then x = k is a root of p(x).
It turns out that the last value in the bottom row of a synthetic division table is the remainder after long division. By the remainder theorem, p(k) = r where r is the remainder after dividing p(x) by (x-k). If r = 0, then (x-k) is a factor, p(k) = 0, and x = k is a root.
Answer:
graph like this:
Step-by-step explanation:
First, in 5 seconds, we know that he drinks 25 mL of slushy. We know this because 1 second is 5 mL, so 5 seconds is 25 mL. So, your graph should be going from the 5 second to 25 mL mark, then the 10 second and 50 mL mark, then the 15 mL and 75 mL mark, and so on.