25 gigaseconds is equal to 2,500,000,000,000 centiseconds
Answer:
1.5055×10²⁴ molecules
Explanation:
From the question given above, the following data were obtained:
Number of mole CO₂ = 2.5 moles
Number of molecules CO₂ =?
The number of molecules present in 2.5 moles CO₂ can be obtained as:
From Avogadro's hypothesis,
1 mole of CO₂ = 6.022×10²³ molecules
Therefore,
2.5 mole of CO₂ = 2.5 × 6.022×10²³
2.5 mole of CO₂ = 1.5055×10²⁴ molecules
Thus, 1.5055×10²⁴ molecules are present in 2.5 moles CO₂
Answer:
0.18 mol
Explanation:
Given data
- Mass of carbon tetrachloride (solvent): 750 g
- Molality of the solution: 0.24 m
- Moles of iodine (solute): ?
Step 1: Convert the mass of the solvent to kilograms
We will use the relationship 1 kg = 1,000 g.
Step 2: Calculate the moles of the solute
The molality is equal to the moles of solute divided by the kilograms of solvent. Then,
Answer:
429.4 kJ are absorbed in the endothermic reaction.
Explanation:
The balanced chemical equation tells us that 1168 kJ of heat are absorbed in the reaction when 4 mol of NH₃ (g) react with 5 mol O₂ (g).
So what we need is to calculates how many moles represent 25 g NH₃(g) and calculate the heat absorbed. (NH₃ is the limiting reagent)
Molar Mass NH₃ = 17.03 g/mol
mol NH₃ = 25.00 g/ 17.03 g/mol = 1.47 mol
1168 kJ /4 mol NH₃ x 1.47 mol NH₃ = 429.4 kJ