Answer:
double replacement
Explanation:
The reaction shown is a double replacement reaction.
It is also known as double decomposition or metathesis reaction.
In such a reaction, there is an actual exchange of partners to form new compounds.
One of the following is the driving force for such reaction:
- formation of an insoluble compound or precipitate
- formation of water or any other non-ionizing compound
- liberation of a gaseous product.
Answer:
Mass of water produced is 22.86 g.
Explanation:
Given data:
Mass of hydrogen = 2.56 g
Mass of oxygen = 20.32 g
Mass of water = ?
Solution:
Chemical equation:
2H₂ + O₂ → 2H₂O
Number of moles of oxygen:
Number of moles = mass/ molar mass
Number of moles = 20.32 g/ 32 g/mol
Number of moles = 0.635 mol
Number of moles of hydrogen:
Number of moles = mass/ molar mass
Number of moles = 2.56 g/ 2 g/mol
Number of moles = 1.28 mol
Now we will compare the moles of water with oxygen and hydrogen.
O₂ : H₂O
1 : 2
0.635 ; 2×0.635 = 1.27
H₂ : H₂O
2 : 2
1.28 : 1.28
The number of moles of water produced by oxygen are less thus it will be limiting reactant.
Mass of water produced:
Mass = number of moles × molar mass
Mass = 1.27 × 18 g/mol
Mass = 22.86 g
I found a presentation of Food web of a pond that will greatly connect with the above problem. http://www.eduweb.com/portfolio/earthsystems/food/foodweb4.html
Normal setting:
Species Pop. size
Blue heron Medium
Perch Medium
Bass Medium
Minnows Medium
Inverts Medium
Algae Medium
If PERCH population size decreases,
Species Pop. sizeBlue heron LowPerch LowBass MediumMinnows HighInverts HighAlgae Low
As you can see, 4 other species are affected when the Perch population size decreased. Bass is not affected.
Removing seed casings from grains is SEPARATING. a soda bubble bubbling when it is opened is MIXING. a bright copper statue turning green is MIXING. remove salt from seawater is SEPARATING. water decomposing is SEPARATING.