The maximum mass of B₄C that can be formed from 2.00 moles of boron (III) oxide is 55.25 grams.
<h3>What is the stoichiometry?</h3>
Stoichiometry of the reaction gives idea about the relative amount of moles of reactants and products present in the given chemical reaction.
Given chemical reaction is:
2B₂O₃ + 7C → B₄C + 6CO
From the stoichiometry of the reaction, it is clear that:
2 moles of B₂O₃ = produces 1 mole of B₄C
Now mass of B₄C will be calculated by using the below equation:
W = (n)(M), where
- n = moles = 1 mole
- M = molar mass = 55.25 g/mole
W = (1)(55.25) = 55.25 g
Hence required mass of B₄C is 55.25 grams.
To know more about stoichiometry, visit the below link:
brainly.com/question/25829169
#SPJ1
Answer:
Ca(OH)₂ + H₂SO₄ → CaSO₄ + H₂O
Explanation:
Chemical equation:
Ca(OH)₂ + H₂SO₄ → CaSO₄ + H₂O
Balanced chemical equation:
Ca(OH)₂ + H₂SO₄ → CaSO₄ + 2H₂O
The given reaction is double displacement reaction in which anion and cation of both reactant exchanged with each other. Calcium hydroxide react with sulfuric acid and form calcium sulfate and water.
Double replacement:
It is the reaction in which two compound exchange their ions and form new compounds.
AB + CD → AD +CB
Answer:
Me and my friends were going to do a science experiment. Jonny’s job was to make the HYPOTHESIS. He said the “ If we mix baking soda and vinegar together, the TEMPERATURE will go down.”
So then Molly mixed the baking soda and vinegar together and checked the TEMPERATURE. We all OBSERVED as the thermometer’s TEMPERATURE went down. “ your THEORY/ HYPOTHESIS was correct!” Exclaimed Molly.
Then the whole science GROUP let out with a cheer! And wrote the information down on their EXPERIMENTAL info chart. They took a microscope and looked at the mixture because they wanted to the the little PARTICLES in the mixture. Lily CONTROLED the microscope she zoomed in and out to see the particles.
Explanation:
i hope this helps:)
I believe an atom. may be wrong, science is not my strong suit
Answer:
1 mole is equal to 1 moles Arsenic Trichloride, or 181.2806 grams.
Explanation: