Answer:
the color is green
- 602.93 nm ( orange color )
the observation is that there is a change of visible color
Explanation:
A) wavelength of visible light that is most strongly reflected from a point on a soap
refraction n = 1.33
wall thickness (t) = 290 nm
2nt = (2m +1 ) ∝/2 -----equation 1
note when m = 0
therefore ∝ = 4nt/ 1 = 4 * 1.33 * 290 = 1542.8nm we will discard this
when m = 1
equation 1 becomes
∝ = 4nt/3 =( 4 * 1.33 * 290) / 3 = 1542.8 / 3 = 514.27 ( wavelength )
the color is green
B) the wavelength when the wall thickness is 340 nm
∝ = 4nt / 2m +1
where m = 1
∝ = (4 * 1.33 * 340 ) / 3 = 1808.8 / 3 = 602.93 nm ( orange color )
the observation is that there is a change of visible color
Recall that average velocity is equal to change in position over a given time interval,
so that the <em>x</em>-component of is
and its <em>y</em>-component is
Solve for and , which are the <em>x</em>- and <em>y</em>-components of the copter's position vector after <em>t</em> = 1.60 s.
Note that I'm reading the given details as
so if any of these are incorrect, you should make the appropriate adjustments to the work above.
Answer:
The tension in the string is equal to Ct
And the time t0 when the rension in the string is 27N is 3.6s.
Explanation:
An approach to solving this problem jnvolves looking at the whole system as one body by drawing an imaginary box around both bodies and taking summation of the forces. This gives F2 - F1 = Ct. This is only possible assuming the string is massless and does not stretch, that way transmitting the force applied across it undiminished.
So T = Ct
When T = 27N then t = T/C = 27/7.5 = 3.6s
It's dependent on the mass. You can fimd the force needed using the formula F = ma. Where F is force, m is mass of the cart and a is the acceleration (0.9m/s^2). The heavier it is the more force you are going to need. Remember unit of force is N