In the bookstore Avanti gave four books so it would be 1
133.0873 g/mol
(NH4)3PO3 - molar mass
-20.16 KJ of heat are released by the reaction of 25.0 g of Na2O2.
Explanation:
Given:
mass of Na2O2 = 25 grams
atomic mass of Na2O2 = 78 gram/mole
number of mole =
=
=0. 32 moles
The balanced equation for the reaction:
2 Na2O2(s) + 2 H2O(l) → 4 NaOH(aq) + O2(g) ∆Hο = −126 kJ
It can be seen that 126 KJ of energy is released when 2 moles of Na2O2 undergoes reaction.
similarly 0.3 moles of Na2O2 on reaction would give:
=
x =
= -20.16 KJ
Thus, - 20.16 KJ of energy will be released.
Answer:
2192.64 PSI.
Explanation:
- From the general law of ideal gases:
<em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the container in L (V = 1650 L).
n is the no. of moles of the gas in mol (n = 9750 mol).
R is the general gas constant (R = 0.082 L.atm/mol.K).
T is the temperature of the gas in (T = 35°C + 273 = 308 K).
∴ P = nRT/V = (9750 mol)(0.082 L.atm/mol.K)(308 K)/(1650 L) = 149.2 atm.
- <u><em>To convert from atm to PSI:</em></u>
1 atm = 14.696 PSI.
<em>∴ P = 149.2 atm x (14.696 PSI/1.0 atm) = 2192.64 PSI.</em>
The balanced equation that illustrates the reaction is:
2C4H6 + 11O2 ......> 8CO2 + 6H2O
number of moles = mass / molar mass
number of moles of oxygen = 2.1 / 32 = 0.065625 moles
Now, from the balanced equation, we can note that:
11 moles of oxygen are required to produce 6 moles of water.
Therefore:
0.065625 moles of oxygen will produce:
(0.065625*6) / 11 = 0.03579 moles of water
number of moles = mass / molar mass
mass = number of moles * molar mass
mass of water = 0.03579 * 18 = 0.644 grams