Molecular weight of AgBr = 187.7
moles of Ag =
moles of Br = moles of Ag = 2.96 x 10⁻³ mol
concentration of HBr (Molarity) = conc. of Br (strong acid) =
Answer: I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
Explanation:
An Oxidant is any substance that oxidizes, or receives electrons from, another; in so doing, it becomes reduced in oxidation number.
A Reductant thus exactly the opposite.
Note that the equation provided shows that Iodine (I2) received an electron to become NEGATIVELY CHARGED:
I2 --> 2I-.
The oxidation number reduced from 0 to -1.
In contrast, the oxidation number of 2S2O3(-2) increases from -4 to -2.
Thus, I2 is the Oxidant; while the 2S2O3(-2) is the reductant.
The mass of oxygen reacted/required in this reaction is obtained as 48g.
<h3>What is stoichiometry?</h3>
The term stoichiometry has to do with mass- volume or mass - mole relationship which ultimately depends on the balanced reaction equation.
Now, we have the reaction; S + O2 ------>SO2
If 1 mole of sulfur dioxide contains 22.4 L
x moles of sulfur dioxide contains 33.6L
x = 1.5 moles of sulfur dioxide.
Since the reaction is 1:1, the number if moles of oxygen required/reacted is 1.5 moles.
Mass of oxygen required/reacted = 1.5 moles * 32 g/mol = 48g
Learn more anout stoichiometry: brainly.com/question/9743981
Given:
Iron, 125 grams
T
1 = 23.5 degrees Celsius, T2 =
78 degrees Celsius.
Required:
Heat produced in kilojoules
Solution:
The molar mass of iron is 55.8
grams per mole. SO we need to change the given mass of iron into moles.
Number of moles of iron = 125 g/(55.8
g/mol) = 2.24 moles
<span>
Q (heat) = nRT = nR(T2 = T1)</span>
Q (heat) = 2.24 moles (8.314
Joules per mol degrees Celsius) (78.0 degrees Celsius – 23.5 degrees Celsius)
<u>Q (heat) = 1014.97 Joules or
1.015 kilojoules</u>
<span>This is the amount of heat
produced in warming 125 g f iron.</span>
<h2>
Explanation:</h2><h2> </h2>
Luster means Shiny. Dull means simple and not full of detail. Hope this helps!Please Rate Brainiest!
-Aslina