Answer:
The work done on the system is -616 kJ
Explanation:
Given;
Quantity of heat absorbed by the system, Q = 767 kJ
change in the internal energy of the system, ΔU = +151 kJ
Apply the first law of thermodynamics;
ΔU = W + Q
Where;
ΔU is the change in internal energy
W is the work done
Q is the heat gained
W = ΔU - Q
W = 151 - 767
W = -616 kJ (The negative sign indicates that the work is done on the system)
Therefore, the work done on the system is -616 kJ
Answer:
Explanation:
kenetic is made for thermal things
1 cubic cm is the same as 1 mL, so the answer would be C.
Incomplete Question.The Complete question is
The Earth spins on its axis and also orbits around the Sun. For this problem use the following constants. Mass of the Earth: 5.97 × 10^24 kg (assume a uniform mass distribution) Radius of the Earth: 6371 km Distance of Earth from Sun: 149,600,000 km
(i)Calculate the rotational kinetic energy of the Earth due to rotation about its axis, in joules.
(ii)What is the rotational kinetic energy of the Earth due to its orbit around the Sun, in joules?
Answer:
(i) KE= 2.56e29 J
(ii) KE= 2.65e33 J
Explanation:
i) Treating the Earth as a solid sphere, its moment of inertia about its axis is
I = (2/5)mr² = (2/5) * 5.97e24kg * (6.371e6m)²
I = 9.69e37 kg·m²
About its axis,
ω = 2π rads/day * 1day/24h * 1h/3600s
ω= 7.27e-5 rad/s,
so its rotational kinetic energy
KE = ½Iω² = ½ * 9.69e37kg·m² * (7.27e-5rad/s)²
KE= 2.56e29 J
(ii) About the sun,
I = mR²
I= 5.97e24kg * (1.496e11m)²
I= 1.336e47 kg·m²
and the angular velocity
ω = 2π rad/yr * 1yr/365.25day * 1day/24h * 1h/3600s
ω= 1.99e-7 rad/s
so
KE = ½ * 1.336e47kg·m² * (1.99e-7rad/s)²
KE= 2.65e33 J
HI!! If you need answers to your exam, then go to https://quizlet.com/ then search for what you need!! I hope this helps I am not sure what your exam is for, and I don't have enough info to tell you all the answers, but hopefully, this will help you!!