Answer:
Hi
True
Explanation:
Since on the inner and outer surfaces of the membrane, a series of negatively charged amino acids are found, which increase the local concentration of cations. The path of the ions begins on the inner surface filled with water molecules where the ion can retain its hydration sphere. Two thirds of its interior in the membrane the inside of the channel narrows in the region of the selectivity filter, forcing the ion to separate from the water molecules. Oxygen atoms in the selectivity filter replace the water molecules in the K+ hydration sphere, forming a series of coordination spheres through which the ion moves. The preferential stabilization of K+ against Na+ is the basis of the ion selectivity of this filter.
The volume of the gas at a temperature of 405.0 K would be 607.5 mL. Making option D the right answer to the question.
What is the volume of the gas?
To find the volume of the gas, the equation to be used would have to be combine gas law.
Combine gas law as the name suggest uses the combination of Charles law which measures Volume against temperature, and Gay-Lussac's law which measures Pressure/Temperature, and Boyle's law which measures pressure X volume where k is constant.
Using the combine law to find the volume, we have:
P₁V₁/T₁=P₂V₂/T₂
Where P₁ = initial pressure
V₁ = initial volume
T₁ = initial temperature
P₂ = final pressure
V₂ = final volume
T₂ = final temperature
P₁ = 2.25atm
V₁ = 450.0 mL
T₁ = 300 K
T₂ = 405.0 K
V₂ = ?
D) 607.5 mL
= [2.25(450)]÷300=[2.25(V₂]÷405
Making V₂ the subject
3.375=2.25 V₂ ÷ 405
V₂ = 3.375 x 405 ÷ 2.25
V₂ = 607.5 mL
In summary, a gas with an initial pressure of 2.25atm, an initial pressure of 450.0 mL and an initial temperature of 300 K would have a final volume of 607.5 mL if the temperature is increased to 405.0 K.
Learn more about Combine gas law here: brainly.com/question/13538773
#SPJ1
<span>Jet streams are the major means of transport for weather systems. A jet stream is an area of strong winds ranging from 120-250 mph that can be thousands of miles long, a couple of hundred miles across and a few miles deep. Jet streams usually sit at the boundary between the troposphere and the stratosphere at a level called the tropopause. This means most jet streams are about 6-9 miles off the ground. Figure A is a cross section of a jet stream.
</span>
The dynamics of jet streams are actually quite complicated, so this is a very simplified version of what creates jets. The basic idea that drives jet formation is this: a strong horizontal temperature contrast, like the one between the North Pole and the equator, causes a dramatic increase in horizontal wind speed with height. Therefore, a jet stream forms directly over the center of the strongest area of horizontal temperature difference, or the front. As a general rule, a strong front has a jet stream directly above it that is parallel to it. Figure B shows that jet streams are positioned just below the tropopause (the red lines) and above the fronts, in this case, the boundaries between two circulation cells carrying air of different temperatures.