Answer:
h, j2, f, g, j1, i, k, l (ell)
Step-by-step explanation:
The horizontal asymptote is the constant term of the quotient of the numerator and denominator functions. Generally, it it is the coefficient of the ratio of the highest-degree terms (when they have the same degree). It is zero if the denominator has a higher degree (as for function f(x)).
We note there are two functions named j(x). The one appearing second from the top of the list we'll call j1(x); the one third from the bottom we'll call j2(x).
The horizontal asymptotes are ...
- h(x): 16x/(-4x) = -4
- j1(x): 2x^2/x^2 = 2
- i(x): 3x/x = 3
- l(x): 15x/(2x) = 7.5
- g(x): x^2/x^2 = 1
- j2(x): 3x^2/-x^2 = -3
- f(x): 0x^2/(12x^2) = 0
- k(x): 5x^2/x^2 = 5
So, the ordering least-to-greatest is ...
h (-4), j2 (-3), f (0), g (1), j1 (2), i (3), k (5), l (7.5)
Answer:
just post them all in one question instead of a ton of different questions. it's annoying.
Step-by-step explanation:
Answer:
-
Step-by-step explanation:
Rule for rounding :
You look at the number next to the place value you are meant to round and if the number is :
=
4 and below you round down.
5 and above you round up
Nearest hundred thousand: 100,000
This is because you look at the number next to the hundred thousand spot which is a 2 so you round down
Nearest ten thousand: 130,000
Same reason as before the number next to the 2 in the number is a 6. So you round up
Nearest thousand: 126,000
The number next to the thousandth place value is a 0 so you round down
Answer:
Solution
p = {-3, 1}
Step-by-step explanation:
Simplifying
p2 + 2p + -3 = 0
Reorder the terms:
-3 + 2p + p2 = 0
Solving
-3 + 2p + p2 = 0
Solving for variable 'p'.
Factor a trinomial.
(-3 + -1p)(1 + -1p) = 0
Subproblem 1
Set the factor '(-3 + -1p)' equal to zero and attempt to solve:
Simplifying
-3 + -1p = 0
Solving
-3 + -1p = 0
Move all terms containing p to the left, all other terms to the right.
Add '3' to each side of the equation.
-3 + 3 + -1p = 0 + 3
Combine like terms: -3 + 3 = 0
0 + -1p = 0 + 3
-1p = 0 + 3
Combine like terms: 0 + 3 = 3
-1p = 3
Divide each side by '-1'.
p = -3
Simplifying
p = -3
Subproblem 2
Set the factor '(1 + -1p)' equal to zero and attempt to solve:
Simplifying
1 + -1p = 0
Solving
1 + -1p = 0
Move all terms containing p to the left, all other terms to the right.
Add '-1' to each side of the equation.
1 + -1 + -1p = 0 + -1
Combine like terms: 1 + -1 = 0
0 + -1p = 0 + -1
-1p = 0 + -1
Combine like terms: 0 + -1 = -1
-1p = -1
Divide each side by '-1'.
p = 1
Simplifying
p = 1
Solution
p = {-3, 1}
Just divided 1.3/100 and it gives you 0.013