Answer:
2AlCl3 + 3H2SO4 → Al2(SO4)3 + 6HCl
Explanation:
Answer:
The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol
Explanation:
The ∆H (heat of reaction) of the combustion reaction is the heat that accompanies the entire reaction. For its calculation you must make the total sum of all the heats of the products and of the reagents affected by their stoichiometric coefficient (number of molecules of each compound that participates in the reaction) and finally subtract them:
Enthalpy of the reaction= ΔH = ∑Hproducts - ∑Hreactants
In this case, you have: 2 NOCl(g) → 2 NO(g) + Cl₂(g)
So, ΔH=
Knowing:
- ΔH= 75.5 kJ/mol
- = 90.25 kJ/mol
- = 0 (For the formation of one mole of a pure element the heat of formation is 0, in this caseyou have as a pure compound the chlorine Cl₂)
- =?
Replacing:
75.5 kJ/mol=2* 90.25 kJ/mol + 0 -
Solving
-=75.5 kJ/mol - 2*90.25 kJ/mol
-=-105 kJ/mol
=105 kJ/mol
<u><em>The standard enthalpy of formation of NOCl(g) at 25 ºC is 105 kJ/mol</em></u>
D, they can be renewed quickly rather than non renewables in which nonrenewable take millions of years. Biomass is all around us, so is water (hydro) and the sun is around us too.
Answer:
Explanation:
As an example, the following cell reaction: Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(m) generates a cell voltage of +1.10 V under standard conditions. Calculate and enter delta G degree (with 3 sig figs) for this reaction in kJ/mol.
Zn(s) + Cu2+(aq) → Zn2+(aq) + Cu(m)
ΔG = ΔG° + RTInQ
Q = 1
ΔG = ΔG°
ΔG = =nFE°
n=no of electrons transfered.
E° = 1.1v
ΔG° = -2 * 96500 * 1.10
= -212300J
ΔG° =-212.3kJ/mol
<h3>Therefore, the ΔG° = -212.3kJ/mol</h3>
Sodium (Na) has a +1 charge and Iodine ( I ) has a -1 charge. To create a molecule of sodium iodide the charges will need to balance.
Because the charges on anion and cation are the same; the molecular formula will be NaI