X must be increased by 6 to get its value to be 0. Then the corresponding change in y will be (-2/3)*6 = -4. That value added to -5 makes it -9.
The y-intercept will be -9.
She owes him $0.75 because if she paid him $1.50 already you just subtract that from $2.25
Step-by-step explanation:
=( n-2)180
= ( 4 - 2 )180
= 360
So, 144 + 90 + m<2 +m<1 = 360
144 + 90 + 85 + m<1 = 360
319 + m<1 = 360
m<1 = 360 - 319
m<1 = 41
their is an unknown angle so let's call it x
let's find x first ( m<6=49)
x + m<6 = 180
x + 49 = 180
x = 180 - 49
x = 131
Now let's find m<7
m<7 + 38 + m<4 + x = 360
m<7 + 38 + 85 + 131 = 360
m<7 + 254 = 360
m<7 = 360 - 254
m< 7 = 106
The trigonometry of non-right triangles
So far, we've only dealt with right triangles, but trigonometry can be easily applied to non-right triangles because any non-right triangle can be divided by an altitude* into two right triangles.
Roll over the triangle to see what that means →

Remember that an altitude is a line segment that has one endpoint at a vertex of a triangle intersects the opposite side at a right angle. See triangles.
Customary labeling of non-right triangles
This labeling scheme is comßmonly used for non-right triangles. Capital letters are anglesand the corresponding lower-case letters go with the side opposite the angle: side a (with length of a units) is across from angle A (with a measure of A degrees or radians), and so on.

Derivation of the law of sines
Consider the triangle below. if we find the sines of angle A and angle C using their corresponding right triangles, we notice that they both contain the altitude, x.

The sine equations are

We can rearrange those by solving each for x(multiply by c on both sides of the left equation, and by a on both sides of the right):

Now the transitive property says that if both c·sin(A) and a·sin(C) are equal to x, then they must be equal to each other:

We usually divide both sides by ac to get the easy-to-remember expression of the law of sines:

We could do the same derivation with the other two altitudes, drawn from angles A and C to come up with similar relations for the other angle pairs. We call these together the law of sines. It's in the green box below.
The law of sines can be used to find the measure of an angle or a side of a non-right triangle if we know:
two sides and an angle not between them ortwo angles and a side not between them.
Law of Sines

Examples: Law of sines
Use the law of sines to find the missing measurements of the triangles in these examples. In the first, two angles and a side are known. In the second two sides and an angle. Notice that we need to know at least one angle-opposite side pair for the Law of Sines to work.
Example 1
Find all of the missing measurements of this triangle:

The missing angle is easy, it's just

Now set up one of the law of sines proportions and solve for the missing piece, in this case the length of the lower side:

Then do the same for the other missing side. It's best to use the original known angle and side so that round-off errors or mistakes don't add up.

Example 2
Find all of the missing measurements of this triangle:

First, set up one law of sines proportion. This time we'll be solving for a missing angle, so we'll have to calculate an inverse sine:

Now it's easy to calculate the third angle:

Then apply the law of sines again for the missing side. We have two choices, we can solve

Either gives the same answer,

Derivation of the law of cosines
Consider another non-right triangle, labeled as shown with side lengths x and y. We can derive a useful law containing only the cosine function.

First use the Pythagorean theorem to derive two equations for each of the right triangles:

Notice that each contains and x2, so we can eliminate x2 between the two using the transitive property:

Then expand the binomial (b - y)2 to get the equation below, and note that the y2 cancel:

Now we still have a y hanging around, but we can get rid of it using the cosine solution, notice that

Substituting c·cos(A) for y, we get

which is the law of cosines
The law of cosines can be used to find the measure of an angle or a side of a non-right triangle if we know:
two sides and the angle between them orthree sides and no angles.
We could again do the same derivation using the other two altitudes of our triangle, to yield three versions of the law of cosines for any triangle. They are listed in the box below.
Law of Cosines
The Law of Cosines is just the Pythagorean relationship with a correction factor, e.g. -2bc·cos(A), to account for the fact that the triangle is not a right triangle. We can write three versions of the LOC, one for every angle/opposite side pair:

Examples: Law of cosines
Use the law of cosines to find the missing measurements of the triangles in these two examples. In the first, the measures of two sides and the included angle (the angle between them) are known. In the second, three sides are known.