Answer:
1. Guidance
2. Inspiration
I think this is right hope it helps
Answer: 406 hours
Explanation:
where Q= quantity of electricity in coloumbs
I = current in amperes = 39.5 A
t= time in seconds = ?
The deposition of copper at cathode is represented by:
Coloumb of electricity deposits 1 mole of copper
i.e. 63.5 g of copper is deposited by = 193000 Coloumb
Thus 19.0 kg or 19000 g of copper is deposited by = Coloumb
(1hour=3600s)
Thus it will take 406 hours to plate 19.0 kg of copper onto the cathode if the current passed through the cell is held constant at 39.5 A
Sorry I don’t know the answer but sorry about this person
Answer: The molar mass of the gas is 31.6 g/mol
Explanation:
According to ideal gas equation:
P = pressure of gas = 3.0 atm
V = Volume of gas = 25.0 L
n = number of moles = ?
R = gas constant =
T =temperature =
Moles =
The molar mass of the gas is 31.6 g/mol
Answer:
0.0457 M
Explanation:
The reaction that takes place is:
- 2HBr + Ca(OH)₂ → CaBr₂ + 2H₂O
First we<u> calculate how many moles of acid reacted</u>, using the <em>HBr solution's concentration and volume</em>:
- Molarity = Moles / Volume
- Molarity * Volume = Moles
- 0.112 M * 12.4 mL = 1.389 mmol HBr
Now we <u>convert HBr moles to Ca(OH)₂ moles</u>, using the stoichiometric ratio:
- 1.389 mmol HBr * = 0.6944 mmol Ca(OH)₂
Finally we <u>calculate the molarity of the Ca(OH)₂ solution</u>, using the <em>given volume and calculated moles</em>:
- 0.6944 mmol Ca(OH)₂ / 15.2 mL = 0.0457 M