Answer:
40.7062 °C
Explanation:
Let the initial temperature = x °C
Boiling temperature of water = 100 °C
Using,
Q = m C ×ΔT
Where,
Q is the heat absorbed in the temperature change from x °C to 100 °C.
C gas is the specific heat of the water = 4.184 J/g °C
m is the mass of water
ΔT = (100 - x) °C
Given,
Mass = 2350 g
Q = 5.83 × 10⁵ J
Applying the values as:
Q = m C ×ΔT
5.83 × 10⁵ = 2350 × 4.184 × (100 - x)
<u>x, Initial temperature = 40.7062 °C </u>
Answer:
The electrons where in motion
Answer:
Explanation:
Hello!
In this case, given the chemical reaction:
In such a way, given the volumes and molarities of each reactant, we can compute the moles of produced iron (III) hydroxide by each of them, via the 3:1 and 1:1 mole ratios:
It means that the sodium hydroxide is the limiting reactant and 0.00833 moles of iron (III) hydroxide are produced; thus, the required mass is:
The carnivores are the hawk, owl, and fox.