"The inert gases are obtained by fractional distillation of air, with the exception of helium which is separated from a few natural gas sources rich in this element, through cryogenic distillation or membrane separation. For specialized applications, purified inert gas shall be produced by specialized generators on-site. They are often used by chemical tankers and product carriers (smaller not a big as well as the tendency of inert gases vesselshtop specialized generators are also available for laboratories."
Answer:
pH = 11.3
Explanation:
From the question given above, the following data were obtained:
Concentration of hydronium ion [H₃O⁺] = 4.950×10¯¹² M
pH =.?
The pH of a solution is defined by the following equation:
pH = –Log [H₃O⁺]
Thus, with the above formula, we can obtain the pH of the solution as follow:
Concentration of hydronium ion [H₃O⁺] = 4.950×10¯¹² M
pH =.?
pH = –Log [H₃O⁺]
pH = –Log 4.950×10¯¹²
pH = 11.3
25.9 kJ/mol. (3 sig. fig. as in the heat capacity.)
<h3>Explanation</h3>
The process:
.
How many moles of this process?
Relative atomic mass from a modern periodic table:
- K: 39.098;
- N: 14.007;
- O: 15.999.
Molar mass of :
.
Number of moles of the process = Number of moles of dissolved:
.
What's the enthalpy change of this process?
for . By convention, the enthalpy change measures the energy change for each mole of a process.
.
The heat capacity is the least accurate number in these calculation. It comes with three significant figures. As a result, round the final result to three significant figures. However, make sure you keep at least one additional figure to minimize the risk of rounding errors during the calculation.