Answer: option # 4, the collisions of the gas particles may result in the transfer of energy.
Explanation:
The kinetic molecular theory (KMT) explains the behavior and properties of gases in terms of the energy, the size, and the motion of the gas particles.
In terms of size, according to the KMT the gases are formed by small particles separated from each other in a vacuum. The volume of the particles is negligible and it is considered that they do not occupy any space.
Since the particles are separated they do not exert either attraction or repulsion to each other.
Regarding the motion, the particles are in constant random motion. They move in straight lines until collide with other particles or with the walls of the veseel. The collisions are elastic (the total kinetic energy is conserved). The kinetic energy may be trasferred between the particles, but the total kinetic energy does not change.
The kinetic energy and the temperature are related: the temperature is a measure of the average kinetic energy of the particles of gas. At a given temperature all the gases have the same average kinetic energy.
Now, check every choice:
1)The gas particles are arranged in a regular pattern:
False. The particles occupy all the volumen and are in random motion.
2) The force of attraction between the gas particles are strong:
False. The particles are separated and they do not exert any force on each other.
3) The gas particles are hard spheres in continuous circular motion.
False. The particles travel in straight until they collide.
4) The collisions of the gas particles may result in the transfer of energy.
True. When particles collide they may transfer kinetic energy but the total kinetic energy is conserved.