Answer:
10
x
^3
−
10
x
^2
+
10
x
−
12
Explanation:
<span>In the electron cloud model, the denser areas represent that there is a great probability that a good number of electrons are ganged up or crowded in that area. The electrons affect the density of some parts of the electron cloud when they condense in those locations.</span>
Answer:
V₂ =31.8 mL
Explanation:
Given data:
Initial volume of gas = 45 mL
Initial temperature = 135°C (135+273 =408 K)
Final temperature = 15°C (15+273 =288 K)
Final volume of gas = ?
Solution:
The given problem will be solve through the Charles Law.
According to this law, The volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure.
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 45 mL × 288 K / 408 k
V₂ = 12960 mL.K / 408 K
V₂ =31.8 mL
The correct answer to this question is option D. A study area to the information in your study unit, the location that has to be the highest illuminance is the study room because it is the place the students can stay to study.
Hoped this helped :D
Answer:
241 nm, it is UV light range
Explanation:
The minimum energy needed required to break the oxygen-oxygen bond = 495 kJ/mol
Energy needed for 1 molecule of oxygen = 495 × 10³ J / avogadro's constant = 495 × 10³ J / ( 6.02 × 10²³) = 8.223 × 10⁻¹⁹ J
Energy = hv
where h = Planck constant = 6.626 × 10 ⁻³⁴ m²kg/s and v = frequency
c speed of light = vλ
c / λ = v
E = hc / λ
λ = hc / E = (6.626 × 10 ⁻³⁴ m²kg/s × 3.0 × 10 ⁸ m/s) / (8.223 × 10⁻¹⁹ J) = 2.41 × 10⁻⁷m = 241 nm
UV light wavelength is between 400 nm - 10 nm