See for yourself how the forces of electricity and magnetism can work together by building a simple DC electric motor using simple materials you can find in any hardware store!
Electricity and magnetism are both forces caused by the movement of tiny charged particles that make up atoms, the building blocks of all matter. When a wire is hooked up to a battery, current flows through the wire because negatively charged electrons flow from the negative terminal of the battery toward the positive terminal of the battery because opposite charges attract each other, while similar charges repel each other. This flow of electrons through the wire is an electric current, and it produces a magnetic field.
In a magnet, atoms are lined up so that the negatively charged electrons are all spinning in the same direction. Like an electric current, the movement of the electrons creates a magnetic force. The area around the magnet where the force is active is called a magnetic field. Metal objects and other magnets that enter this field will be pulled toward the magnet.
The way the atoms are lined up creates two different poles in the magnet, a north pole and a south pole. As with electrical charges, opposite poles attract each other, while like poles repel each other.
Learn about electromagnetism and its many uses here.
Now let's watch it work as we build a motor.
(Note: This science project requires adult supervision.)
Answer:
450
Explanation:
Given,
Mass= 100kg
Velocity= 3 m/s
Kinetic Energy= ?
Kinetic Energy= 1/2 mv^2
= 1/2× 100× 3^2
= 1/2× 900
= 450.
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>HELPED</em><em> </em><em>:</em><em>)</em>
Answer:
Avogadro's law.
Explanation:
Avogadro’s law states that, equal volumes of all gases at the same temperature and pressure contain the same number of molecules.
Mathematically,
V n
V = Kn where V = volume in cm3, dm3, ml or L; n = number of moles of gas;
K = mathematical constant.
The ideal gas equation is a combination of Boyle's law, Charles' law and Avogadro’s law.
V 1/P at constant temperature (Boyle’s law)
V T at constant pressure ( Charles’law)
V n at constant temperature and pressure ( Avogadro’s law )
Combining the equations yields,
V nT/P
Introducing a constant,
V = nRT/P
PV = nRT
Where P = pressure in atm, Pa, torr, mmHg or Nm-2; V = volume in cm3, dm3, ml or L; T = temperature in Kelvin; n = number of moles of gas in mol; R = molar gas constant = 0.082 dm3atmK-1mol-1
Answer:
E1 = 2996.667N/C E2 = 11237.5N/C
Explanation:
E1 = kQ1/r^2
=8.99 x 10^9 x 30 x 10^-9/(30x10^-2)^2
= 2996.667N/C
E2 = kQ2/r^2
= 8.99 x 10^9 x 50 x 10^-9/(20x10^-2)^2
= 11237.5N/C
The direction are towards the point a