Answer:
Number of moles = 0.057 × 10⁻⁷ mol
Explanation:
Given data:
Mass of SiO₂ = 3.4 × 10⁻⁷ g
Number of moles = ?
Solution:
Number of moles = mass/molar mass
Molar mass of SiO₂ = 60 g/mol
by putting values,
Number of moles = 3.4 × 10⁻⁷ g / 60 g/mol
Number of moles = 0.057 × 10⁻⁷ mol
Answer:
The change in entropy is -1083.112 joules per kilogram-Kelvin.
Explanation:
If the water is cooled reversibly with no phase changes, then there is no entropy generation during the entire process. By the Second Law of Thermodynamics, we represent the change of entropy (), in joules per gram-Kelvin, by the following model:
(1)
Where:
- Mass, in kilograms.
- Specific heat of water, in joules per kilogram-Kelvin.
, - Initial and final temperatures of water, in Kelvin.
If we know that , , and , then the change in entropy for the entire process is:
The change in entropy is -1083.112 joules per kilogram-Kelvin.
A decomposition reaction occurs when one reactant breaks down into two or more products. It can be represented by the general equation:
AB → A + B
In this equation, AB represents the reactant that begins the reaction, and A and B represent the products of the reaction. The arrow shows the direction in which the reaction occurs.