So n=c/v, n= index, c=speed of light and v= speed of light in diamond. 2.42=c/v so v=c/2.42, c≈<span>3x108 m/sec</span><span> so v=</span><span>1.24x108 m/sec</span>.
<span>Hope this helps.</span>
I think the answer is ruthorford
Answer:
<h2>E) 52.5 cm</h2>
Explanation:
Step one:
given data
period T= 3 milliseconds= 0.003
velocity v= 175m/s
wave lenght λ=?
Step two:
we know that f=1/T
the expression relating period and wave lenght is
v=λ/T
λ=v*T
λ=175*0.002
λ=0.525m
to cm= 0.525*100
=52.5cm
The wavelength of the wave is E) 52.5 cm
DE which is the differential equation represents the LRC series circuit where
L d²q/dt² + Rdq/dt +I/Cq = E(t) = 150V.
Initial condition is q(t) = 0 and i(0) =0.
To find the charge q(t) by using Laplace transformation by
Substituting known values for DE
L×d²q/dt² +20 ×dq/dt + 1/0.005× q = 150
d²q/dt² +20dq/dt + 200q =150
Answer:
0.906
Explanation:
Let g = 9.81 m/s2. We can calculate the rate of change in potential energy when m = 201kg of water is falling down a distance of h = 131m per second
So the efficiency of the water turbine is the ratio of output power over input power: