Answer:
Hence proved △ABE∼△CBF.
Step-by-step explanation:
Given,
ABCD is a parallelogram.
BF ⊥ CD and
BE ⊥ AD
To Prove : △ABE∼△CBF
We have drawn the diagram for your reference.
Proof:
Since ABCD is a parallelogram,
So according to the property of parallelogram opposite angles are equal in measure.
⇒1
And given that BF ⊥ CD and BE ⊥ AD.
So we can say that;
⇒2
Now In △ABE and △CBF
∠A = ∠C (from 1)
∠E = ∠F (from 2)
So by A.A. similarity postulate;
△ABE∼△CBF
Answer:
an=1*2.5^(n-1)
=2.5^(n-1)
Step-by-step explanation:
Complete question below:
What value, written as a decimal, should Lena use as the common ratio? Lena is asked to write an explicit formula for the graphed geometric sequence. On a coordinate plane, 3 points are plotted. The points are (1, 1), (2, 2.5), (3, 6.25).
Solution
Point (1, 1), (2, 2.5), (3, 6.25).
a=1
ar=2.5
ar^2=6.25
From ar and ar^2
r=6.25/2.5
=2.5
r=2.5
an=ar^(n-1)
Therefore, the explicit formula is
an=1*2.5^(n-1)
=2.5^(n-1)
(3/4) / (1/12)...when dividing with fractions, flip what u r dividing by, then multiply
3/4 * 12/1 =
36/4 =
9 bags <===
Answer:
4355
Step-by-step explanation: