Answer:
diagram: see image, x-component: 84.3 N, acceleration: 4.38 m/s^2
Explanation:
(see image for further explanation)
Answer: 0.0138 m^2 = 138 cm^2
Explanation:
The thermal expansion is the term use for the physical phenomena of dilation of the objects when they are exposed to changes in temperature.
The objects dilate when they are heated and contract when they are cooled.
The dilation is proportional to the change in temperatur.
For linear dilation, the proportionality constant is called linear dilation coefficient of the materials, it is named α and is measured in °C ^-1.
ΔL = α * Lo * ΔT, which means that the dilation (or contraction) is proportional to the product of the original length (Lo) and the change of temperature (ΔT).
There is also superficial dilation, for which the dilation is:
ΔA = β * Ao * ΔT, which means that the superficial dilation (or contraction) is proportional to the product of the original area (Ao) and the change of temperature (ΔT).
It is very interesting and important to solve problems that β = 2α, because regularly you will find the values of α for different materials and so, you just to multiply it times 2 to use β.
For this problem:
- Original area, Ao = area of the flat roof at - 10°C = 2.0m * 3.0m = 6.0 m^2.
- α for aluminum = 24 * 10^ -6 °C^-1.
- ΔT = 38°C - (-10°C) = 48°C
So, ΔA = 6.0m^2 * (2 * 24*10^-6 °C&-1) * 48°C = 0.0138 m^2
And that is the area that should stick out in summer to fit the structure during cold winter nights.
You can pass that number to cm^2 to grasp better the idea of this size:
0.0138 m^2 * (100 cm)^2 / m^2 = 138 cm^2
Answer:
a = v²/r
Explanation:
The acceleration of a body moving in a circular path is known as the centripetal acceleration. This is the acceleration of a body that keeps the body within the circular path. It is written in terms of the linear velocity v and the radius of the circle of rotation as shown;
a = v²/r where
v is the linear velocity
r is the radius
a is the centripetal acceleration
Answer:
17.64 km/h
Explanation:
mass of car, m = 1000 kg
Kinetic energy of car, K = 1.2 x 10^4 J
Let the speed of car is v.
Use the formula for kinetic energy.
By substituting the values
v = 4.9 m/s
Now convert metre per second into km / h
We know that
1 km = 1000 m
1 h = 3600 second
So,
v = 17.64 km/h
Thus, the reading of speedometer is 17.64 km/h.