C) DNA
Inside the nucleus, DNA and proteins together form chromosomes.
True. Some bacterial cells are resistant to a variety of antimicrobials because they actively pump the drugs out of the cell.
A significant resistance mechanism in Gram-negative bacteria is drug efflux. It expel solutes from the cell. Antimicrobials and metabolites are just a few of the hazardous compounds that Efflux pumps help bacteria remove from their interior environments so they can regulate it.
The main efflux systems in Gram-negative bacteria are members of the RND superfamily and typically consist of an outer membrane protein channel, a periplasmic protein, and a cytoplasmic membrane pump. The most common example is MFS (such as Bmr and Blt in Bacillus subtilis) and the ABC transporters.
Learn more about antimicrobials here:
brainly.com/question/13052094
#SPJ4
Answer:
(2⁵)²: 1024 combinations
Explanation:
In this case, the chromosome haploid number (n) of the target species is equal to 10, and therefore its diploid number (2n) is equal to 5 (i.e., somatic cells in the target species contain 5 pairs of chromosomes). That means that one individual can produce 2⁵ or 32 different gametic combinations. Moreover, the number of possible combinations that emerge from paring different gametes (sexual reproduction) can be calculated as (32)² = 1024 combinations.