A company that produces cranberries knows that about 7%7\%7%7, percent of its cranberries are bruised in the bagging process. Th
ey changed their bagging method, and they were curious if the proportion of cranberries bruised was different.
They tested H0:p=0.07H_0: p=0.07H0:p=0.07H, start subscript, 0, end subscript, colon, p, equals, 0, point, 07 versus Ha:p≠0.07H_\text{a}:p\neq0.07Ha:p=0.07H, start subscript, start text, a, end text, end subscript, colon, p, does not equal, 0, point, 07, where pppp is the proportion of cranberries bruised, with a random sample of 600600600600 cranberries. They found that 10%10\%10%10, percent of cranberries in the sample were bruised. Those results yielded a test statistic of z≈2.88z \approx 2.88z≈2.88z, approximately equals, 2, point, 88 and a P-value of approximately 0.0040.0040.0040, point, 004. Assume that the conditions for inference were met.