The velocity is 60 because you divide your distance by your time (240÷4=60)
a) At a position of 2.0m, the Initial energy is
all made up of the potential energy=m*g*hi<span>
and meanwhile at 1.5 all its energy is also potential energy=m*g*hf
The percentage of energy remaining is E=m*g*hi/m*g*hf x 100
and since mass and gravity are constant so it leaves us with
just E=hi/hf
which 1.5/2.0 x100= 75% so we see that we lost 25% of the
energy or 0.25 in fraction
b) Here use the equation vf^2=vi^2+2gd
<span>where g is gravity, vf is the final velocity and vi is the
initial velocity while d is the distance travelled
so in here we are looking for the vi so let us isolate that
variable
we know that at maximum height or peak, the velocity is 0 so
vf is 0
therefore,</span></span>
vi =sqrt(-2gd) <span>
vi =sqrt(-2x-9.81x1.5) </span>
<span>vi =5.4 m/s
<span>c) The energy was converted to heat due to friction with the
air and the ground.</span></span>
Answer:
F₂= 210 pounds
Explanation:
Conceptual analysis
Hooke's law
Hooke's law establishes that the elongation (x) of a spring is directly proportional to the magnitude of force (F) applied to it, provided that said spring is not permanently deformed:
F= K*x Formula (1)
Where;
F is the magnitude of the force applied to the spring in Newtons (Pounds)
K is the elastic spring constant, which relates force and elongation. The higher its value, the more work it will cost to stretch the spring. (Pounds/inch)
x the elongation of the spring (inch)
Data
The data given is incorrect because if we apply them the answer would be illogical.
The correct data are as follows:
F₁ =80 pounds
x₁= 8 inches
x₂= 21 inches
Problem development
We replace data in formula 1 to calculate K :
F₁= K*x₁
K=( F₁) / (x₁)
K=( 80) / (8) = 10 pounds/ inche
We apply The formula 1 to calculate F₂
F₂= K*x₂
F₂= (10)*(21)
F₂= 210 pounds
<span>Distance in Miles (.25) x 3600 (seconds in an hour) / time in seconds = 200 MPH. Drag racing calculates the top speed via a speed trap starting 66 feet from the finish line.</span>
The image of the water tower and the houses is in the attachment.
Answer: (a) P = 245kPa;
(b) P = 173.5 kPa
Explanation: <u>Gauge</u> <u>pressure</u> is the pressure relative to the atmospheric pressure and it is only dependent of the height of the liquid in the container.
The pressure is calculated as: P = hρg
where
ρ is the density of the liquid, in this case, water, which is ρ = 1000kg/m³;
When it is full the reservoir contains 5.25×10⁵ kg. So, knowing the density, you know the volume:
ρ =
V = ρ/m
V =
V = 525 m³
To know the height of the spherical reservoir, its diameter is needed and to determine it, find the radius:
V =
r =
r = 5.005 m
diameter = 2*r = 10.01m
(a) Height for House A:
h = 15 + 10.01
h = 25.01
P = hρg
P = 25.01.10³.9.8
P = 245.10³ Pa or 245kPa
(b) h = 25 - 7.3
h = 17.71
P = hρg
P = 17.71.1000.9.8
P = 173.5.10³ Pa or 173.5 kPa