Answer:
The measure of the fourth angle = 137.1°
Step-by-step explanation:
Let x = the measure of the fourth angle
Sum of all 4 interior angles in a quadrilateral equal 360°
so
x + 23.5° + 99° + 100.4° = 360°
x + 222.9° = 360°
x = 360° - 222.9°
x = 137.1°
We know that
The sum of the lengths of any two sides of a triangle is greater than the length of the third side (Triangle Inequality Theorem)
Let
A------> Lincoln, NE
B------> Boulder, CO
C------> third city
we know that
in the triangle ABC
AB=500 miles
BC=200 miles
AC=x
Applying the Triangle Inequality Theorem
1) 500+200 > x------> 700 > x------> x < 700 miles
2) 200+x > 500----> x > 500-200------> x > 300 miles
the solution for x is
300 < x < 700
the interval is------> (300,700)
the possible distances, d, in miles, between Lincoln, NE, and the third city, are in the range between 300 and 700 miles
Answers:
x = 4
EF = 14
CF = 7
EC = 7
-------------------------------------------------------------
-------------------------------------------------------------
Work Shown:
C is the midpoint of segment EF. This means that EC = CF. In other words, the two pieces are congruent.
Use substitution and solve for x
EC = CF
5x-13 = 3x-5
5x-13+13 = 3x-5+13
5x = 3x+8
5x-3x = 3x+8-3x
2x = 8
2x/2 = 8/2
x = 4
Now that we know that x = 4, we can use this to find EC and CF
Let's compute EC
EC = 5x - 13
EC = 5*x - 13
EC = 5*4 - 13 ... replace x with 4
EC = 20 - 13
EC = 7
Let's compute CF
CF = 3x - 5
CF = 3*x - 5
CF = 3*4 - 5 ... replace x with 4
CF = 12 - 5
CF = 7
As expected, EC = CF (both are 7 units long).
By the segment addition postulate, we can say EC+CF = EF
EC+CF = EF
EF = EC+CF
EF = 7+7
EF = 14
Answer:
z-score=0.385
(See attached picture)
Step-by-step explanation:
The procedure to find the z-score will depend on the resources we have available. I have a table with the area between the mean and the value we wish to normalize, so the very first thing we need to do is precisely find this area we need to analyze.
Everything to the left of thte mean will represent 50% of the data, so we start by subtracting:
50%-35%=15%
so we need to look in the table for the value 0.15.
In my table I can see that for an area of 0.15, the z-score will be between 0.38 (z-score of 0.1480) and 0.39 (z-score of 0.1517).
By doing some interpolation, you can determine a more accurate value of the z-score to be 0.385.
I’m not that sure about my answer, but if I’m not wrong:
Total cost with 6 snacks: 78$
Total cost with x snacks: anything above 60$