Answer:
4.
You see, 2 atoms of O in the CO₂ and 2 O in the 2 moles of H₂O
Explanation:
CH₄ + 2O₂ → CO₂ + 2H₂O
<u>Answer:</u> The percent change in volume will be 25 %
<u>Explanation:</u>
To calculate the final temperature of the system, we use the equation given by Charles' Law. This law states that volume of the gas is directly proportional to the temperature of the gas at constant pressure.
Mathematically,
where,
are the initial volume and temperature of the gas.
are the final volume and temperature of the gas.
We are given:
Putting values in above equation, we get:
Percent change of volume =
Percent change of volume =
Hence, the percent change in volume will be 25 %
Answer:
It comes from same parent material.
Explanation:
The two rocks have some similar minerals which indicates that they are comes from the same parent material but with the passage of time it is mixed with other minerals due to which they are some different in composition from one another so we can conclude that they comes from the same parent material due to the presence of some similar minerals.
Answer:
54 g
Explanation:
Given data:
Mass of carbon = 18 g
Mass of CO₂ = 72 g
Mass of oxygen needed = ?
Solution:
Chemical reaction:
C + O₂ → CO₂
according to law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by French chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.
In given photosynthesis reaction:
6CO₂ + 6H₂O + energy → C₆H₁₂O₆ + 6O₂
there are six carbon atoms, eighteen oxygen atoms and twelve hydrogen atoms on the both side of equation so this reaction followed the law of conservation of mass.
In a similar way,
C + O₂ → CO₂
18 g + X = 72
X = 72 -18
X = 54 g
Thus, 54 g of O₂ are required.
Answer:
Your answer will be b(molten material from the outer core makes its way to the surface of earth)
Explanation: