The answer to this is Helium :) it's in the farthest right columb and is a noble gas.
please mark as brainliest!
A: the type of plant
B: how tall the plant is
288.51 N is the magnitude of the force that the beam exerts on the hi.nge.
Given
Mass 0f beam = 40 Kg
The horizontal component of the force exerted by the hi_nge on the beam is 86.62 N
Angle between the beam and cable is = 90°
Angle between beam and the horizontal component = 31°
As the system of the beam, hi_nge and cable are in equilibrium.
The magnitude of the force that the beam exerts on the hi_nge can be calculated by -
F =The horizontal component of force + the vertical component of force
F = 86.62 N + 40 × 9.8 × sin 31°
F =86.62 N + 201.89 N
F = 288.51 N
Hence, the magnitude of the force that the beam exerts on the hi_nge is 288.51 N.
Learn more about components of forces here brainly.com/question/26446720
#SPJ1
The object is moving, so at different times, it has different displacement. I'm guessing that you probably want to know the displacement at the end of the time on the graph ... 5 seconds.
Displacement is the distance and the direction FROM (the position at the beginning) TO (the position at the end).
At the beginning ... time=0 ... the position is 1 meter.
At the end ... time=5 ... the position is zero.
The distance FROM the beginning TO the end is (zero - 1m) . That's <em>-1m </em>.
Answer:
129.6 seconds
Explanation:
Given that :
α = 0.0002°c-1
θ1 = 20°C
θ2 = 5°C
Time t = one day ; Converting to seconds ; number of seconds in a day ; (24 * 60 * 60) = 86400 seconds
Let dT= change in time
Using the relation :
dT = 0.5* α * dθ * t
dθ = (20 - 5) = 15°C
dT = 0.5 * 0.0002 * 15 * 86400
dT = 129.6 seconds