Answer:
0.006075Joules
Explanation:
The final kinetic energy of the system is expressed as;
KE = 1/2(m1+m2)v²
m1 and m2 are the masses of the two bodies
v is the final velocity of the bodies after collision
get the final velocity using the law of conservation of momentum
m1u1 + m2u2 = (m1+m2)v
0.12(0.45) + 0/12(0) = (0.12+0.12)v
0.054 = 0.24v
v = 0.054/0.24
v = 0.225m/s
Get the final kinetic energy;
KE = 1/2(m1+m2)v
KE = 1/2(0.12+0.12)(0.225)²
KE = 1/2(0.24)(0.050625)
KE = 0.12*0.050625
KE = 0.006075Joules
Hence the final kinetic energy of the system is 0.006075Joules
Answer:
After 4 s of passing through the intersection, the train travels with 57.6 m/s
Solution:
As per the question:
Suppose the distance to the south of the crossing watching the east bound train be x = 70 m
Also, the east bound travels as a function of time and can be given as:
y(t) = 60t
Now,
To calculate the speed, z(t) of the train as it passes through the intersection:
Since, the road cross at right angles, thus by Pythagoras theorem:
Now, differentiate the above eqn w.r.t 't':
For t = 4 s:
The answer is Ultraviolet
Answers:
a)
b)
Explanation:
a) The centripetal acceleration of an object moving in a uniform circular motion is given by the following equation:
Where:
is the angular velocity of the ball
is the radius of the circular motion, which is equal to the length of the string
Then:
This is the centripetal acceleration of the ball
b) On the other hand, in this circular motion there is a force (centripetal force ) that is directed towards the center and is equal to the tension () in the string:
Where is the mass of the ball
Hence:
This is the tension in the string