I’m assuming you mean barium nitrite, Ba(NO2)2.
First convert grams of Ba(NO2)2 to moles using the molar mass of Ba(NO2)2. Then use the mole ratio of 4 moles of oxygen per 1 mole of Ba(NO2)2 to convert to moles of oxygen. Then use the molar mass of oxygen to convert to grams of oxygen.
45.7 g Ba(NO2)2 • 1 mol Ba(NO2)2 / 229.35 g Ba(NO2)2 • 4 mol O / 1 mol Ba(NO2)2 • 16.0 g O / 1 mol O = 12.8 g oxygen
C. 50%
Unless the question is saying he only gets heads once, in which case it would be 0%. Or the coin could have 2 heads. Then it would be 100%.
But I'm pretty sure it's 50%.
Balanced equation:
<span>CaO + 2 HCl --> CaCl2 + H2O </span>
<span>Calculate moles of each reactant: </span>
<span>60.4 g CaO / 56.08 g/mol = 1.08 mol CaO </span>
<span>69.0 g HCl / 36.46 g/mol = 1.89 mol HCl </span>
<span>Identify the limiting reactant: </span>
<span>Moles CaO needed to react with all HCl: </span>
<span>1.89 mol HCl X (1 mol CaO / 2 mol HCl) = 0.946 mol CaO </span>
<span>Because you have more CaO than that available, HCl is the limiting reactant. </span>
<span>Calculate moles and mass CaCl2: </span>
<span>1.89 mol HCl X (1 mol CaCl2 / 2mol HCl) X 111.0 g/mol = 105 g CaCl2</span>
Answer:
4046atm
Explanation:
For this question you can use the ideal gas law,
<em /><em />
Where P is pressure, V is volume, n is moles of substance, R is the constant, and T is the temperature.
Because of the units given, R will equal .08026
<h3>Rearrange the equation to solve for pressure:</h3>
Then, plug in the values (I'll be excluding units for simplicity, but they all cancel out for pressure in atm):
This will give you: