Answer:
See explanation
Explanation:
The reactivity of metals has a lot to do with their position in the electrochemical series. However, it is also known that metallic character decreases across the period. This implies that as we move from left to right along the periodic table. Sodium, magnesium, aluminum and silicon continues to decrease in metallic character. As a matter of fact, silicon is a metalloid and not a pure metal.
Sodium reacts with cold water to give a vigorous reaction,magnesium and aluminium reacts with steam at red heat.
Silicon does not react with water, even as steam, under normal conditions.
Answer:
2H⁺ + NO₃⁻ + 1e⁻ → NO₂ + H₂O
Explanation:
NO₃⁻ → NO₂
In left side, Nitrogen acts with +5 by oxidation number
In right side, the oxidation number is +4
This is a reduction reaction, because the oxidation number has decreased. So the N has gained electrons.
NO₃⁻ + 1e⁻ → NO₂
In acidic medium, we have to add water, where there are less oxygens to ballance the amount. We have 2 O in left side, and 3 O in right side, so we have to add 1 H₂O on left side.
NO₃⁻ + 1e⁻ → NO₂ + H₂O
Now that oxygens are ballanced, we have to ballance the hydrogens by adding protons in the opposite side
2H⁺ + NO₃⁻ + 1e⁻ → NO₂ + H₂O
I'm pretty sure its metals that make good conductors.
Answer:
Explanation:
<u>1. Convert Molecules to Moles</u>
First, we must convert molecules to moles using Avogadro's Number: 6.022*10²³. This tells us the number of particles in 1 mole of a substance. In this case, the particles are molecules of sodium hydroxide.
Multiply by the given number of molecules.
Flip the fraction so the molecules cancel out.
<u>2. Convert Moles to Grams</u>
Next, we convert moles to grams using the molar mass.
We must calculate the molar mass using the values on the Periodic Table. Look up each individual element.
- Na: 22.9897693 g/mol
- O: 15.999 g/mol
- H: 1.008 g/mol
Since the formula has no subscripts, we can simply add the molar masses.
- NaOH: 22.9897693+15.999+1.008=39.9967693 g/mol
Use this as a ratio.
Multiply by the number of moles we calculated.
The moles of sodium hydroxide cancel.
The original measurement of molecules has 3 significant figures, so our answer must have the same. For the number we calculated, that is the thousandth place. The 0 tells us to leave the 7 in the hundredth place.
1.20*10²² molecules of sodium hydroxide is approximately 0.797 grams.
Boyle's Law states: pV = constant.
24.43 x 1.895 = 46.29485
therefore, 15.6 x _____ = 46.29485
unknown = 2.968L