Answer:
D because the grass is eaten by the antelope and the antelope is eaten bu the lion
This is an acid-base reaction where HF is the acid and H2O is the base (it's amphoteric and can be an acid or a base). The products would then H3O+ (the conjugate acid) and F- (the conjugate base). Now, we can simply construct a reaction using the found products and reactants. This acid-base reaction would be HF + H2O <--> H3O+ + F-.
Hope this helps!
Answer: Peer-reviewed journal article is the most useful because the information in them had been carefully scrutinized and aproved by people who are experts in that particular field.
Answer:
Choice d. No effect will be observed as long as other factors (temperature, in particular) are unchanged.
Explanation:
The equilibrium constant of a reaction does not depend on the pressure. For this particular reaction, the equilibrium quotient is:
.
Note that the two sides of this balanced equation contain an equal number of gaseous particles. Indeed, both and will increase if the pressure is increased through compression. However, because and have the same coefficients in the equation, their concentrations are raised to the same power in the equilibrium quotient .
As a result, the increase in pressure will have no impact on the value of . If the system was already at equilibrium, it will continue to be at an equilibrium even after the change to its pressure. Therefore, no overall effect on the equilibrium position should be visible.
Answer:
2.68 cm^3
Explanation:
Density= Mass/Volume
so...
8.96 g/cm^3 = 24.01 g/ V
and then u solve so it would be 2.68 cm ^3
((: